• Title/Summary/Keyword: Lightweight Deep Neural Network

Search Result 38, Processing Time 0.027 seconds

Analysis of Livestock Vocal Data using Lightweight MobileNet (경량화 MobileNet을 활용한 축산 데이터 음성 분석)

  • Se Yeon Chung;Sang Cheol Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.16-23
    • /
    • 2024
  • Pigs express their reactions to their environment and health status through a variety of sounds, such as grunting, coughing, and screaming. Given the significance of pig vocalizations, their study has recently become a vital source of data for livestock industry workers. To facilitate this, we propose a lightweight deep learning model based on MobileNet that analyzes pig vocal patterns to distinguish pig voices from farm noise and differentiate between vocal sounds and coughing. This model was able to accurately identify pig vocalizations amidst a variety of background noises and cough sounds within the pigsty. Test results demonstrated that this model achieved a high accuracy of 98.2%. Based on these results, future research is expected to address issues such as analyzing pig emotions and identifying stress levels.

Design and Implementation of a Lightweight On-Device AI-Based Real-time Fault Diagnosis System using Continual Learning (연속학습을 활용한 경량 온-디바이스 AI 기반 실시간 기계 결함 진단 시스템 설계 및 구현)

  • Youngjun Kim;Taewan Kim;Suhyun Kim;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.3
    • /
    • pp.151-158
    • /
    • 2024
  • Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.

A Performance Study on Lightweight Neural Network for Mobile Deep Learning (모바일 딥러닝을 위한 신경망 성능 평가에 관한 연구)

  • Shin, Ik Hee;Park, Junyong;Moon, Yong Hyuk;Lee, Yong-Ju
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.435-437
    • /
    • 2019
  • 모바일 환경에서 다양한 AI 관련 응용을 수행하기 위해, 정확도에 기반한 크고 깊은 신경망 이외에, 정확도를 비교적 유지하면서 좀더 효율적인 신경망 구조에 대한 다양한 연구가 진행중이다. 본 논문에서는 모바일 딥러닝을 위한 다양한 임베디드 장치 및 모바일 폰에서의 성능 평가를 통해 경량 신경망의 비교 분석에 대한 연구를 담고 있다.

Lightweight of ONNX using Quantization-based Model Compression (양자화 기반의 모델 압축을 이용한 ONNX 경량화)

  • Chang, Duhyeuk;Lee, Jungsoo;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.93-98
    • /
    • 2021
  • Due to the development of deep learning and AI, the scale of the model has grown, and it has been integrated into other fields to blend into our lives. However, in environments with limited resources such as embedded devices, it is exist difficult to apply the model and problems such as power shortages. To solve this, lightweight methods such as clouding or offloading technologies, reducing the number of parameters in the model, or optimising calculations are proposed. In this paper, quantization of learned models is applied to ONNX models used in various framework interchange formats, neural network structure and inference performance are compared with existing models, and various module methods for quantization are analyzed. Experiments show that the size of weight parameter is compressed and the inference time is more optimized than before compared to the original model.

Detection Algorithm of Road Surface Damage Using Adversarial Learning (적대적 학습을 이용한 도로 노면 파손 탐지 알고리즘)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.95-105
    • /
    • 2021
  • Road surface damage detection is essential for a comfortable driving environment and the prevention of safety accidents. Road management institutes are using automated technology-based inspection equipment and systems. As one of these automation technologies, a sensor to detect road surface damage plays an important role. For this purpose, several studies on sensors using deep learning have been conducted in recent years. Road images and label images are needed to develop such deep learning algorithms. On the other hand, considerable time and labor will be needed to secure label images. In this paper, the adversarial learning method, one of the semi-supervised learning techniques, was proposed to solve this problem. For its implementation, a lightweight deep neural network model was trained using 5,327 road images and 1,327 label images. After experimenting with 400 road images, a model with a mean intersection over a union of 80.54% and an F1 score of 77.85% was developed. Through this, a technology that can improve recognition performance by adding only road images was developed to learning without label images and is expected to be used as a technology for road surface management in the future.

Ensemble Knowledge Distillation for Classification of 14 Thorax Diseases using Chest X-ray Images (흉부 X-선 영상을 이용한 14 가지 흉부 질환 분류를 위한 Ensemble Knowledge Distillation)

  • Ho, Thi Kieu Khanh;Jeon, Younghoon;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.313-315
    • /
    • 2021
  • Timely and accurate diagnosis of lung diseases using Chest X-ray images has been gained much attention from the computer vision and medical imaging communities. Although previous studies have presented the capability of deep convolutional neural networks by achieving competitive binary classification results, their models were seemingly unreliable to effectively distinguish multiple disease groups using a large number of x-ray images. In this paper, we aim to build an advanced approach, so-called Ensemble Knowledge Distillation (EKD), to significantly boost the classification accuracies, compared to traditional KD methods by distilling knowledge from a cumbersome teacher model into an ensemble of lightweight student models with parallel branches trained with ground truth labels. Therefore, learning features at different branches of the student models could enable the network to learn diverse patterns and improve the qualify of final predictions through an ensemble learning solution. Although we observed that experiments on the well-established ChestX-ray14 dataset showed the classification improvements of traditional KD compared to the base transfer learning approach, the EKD performance would be expected to potentially enhance classification accuracy and model generalization, especially in situations of the imbalanced dataset and the interdependency of 14 weakly annotated thorax diseases.

  • PDF

Performance Evaluation of Efficient Vision Transformers on Embedded Edge Platforms (임베디드 엣지 플랫폼에서의 경량 비전 트랜스포머 성능 평가)

  • Minha Lee;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.89-100
    • /
    • 2023
  • Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.

Lightening of Human Pose Estimation Algorithm Using MobileViT and Transfer Learning

  • Kunwoo Kim;Jonghyun Hong;Jonghyuk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.17-25
    • /
    • 2023
  • In this paper, we propose a model that can perform human pose estimation through a MobileViT-based model with fewer parameters and faster estimation. The based model demonstrates lightweight performance through a structure that combines features of convolutional neural networks with features of Vision Transformer. Transformer, which is a major mechanism in this study, has become more influential as its based models perform better than convolutional neural network-based models in the field of computer vision. Similarly, in the field of human pose estimation, Vision Transformer-based ViTPose maintains the best performance in all human pose estimation benchmarks such as COCO, OCHuman, and MPII. However, because Vision Transformer has a heavy model structure with a large number of parameters and requires a relatively large amount of computation, it costs users a lot to train the model. Accordingly, the based model overcame the insufficient Inductive Bias calculation problem, which requires a large amount of computation by Vision Transformer, with Local Representation through a convolutional neural network structure. Finally, the proposed model obtained a mean average precision of 0.694 on the MS COCO benchmark with 3.28 GFLOPs and 9.72 million parameters, which are 1/5 and 1/9 the number compared to ViTPose, respectively.