• Title/Summary/Keyword: Lightweight Data

Search Result 389, Processing Time 0.026 seconds

A Lightweight Authentication Mechanism for Acknowledgment Frame in IEEE 802.15.4 (IEEE 802.15.4에서 확인 프레임을 위한 경량 인증 메커니즘)

  • Heo, Joon;Hong, Choong-Seon
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.175-185
    • /
    • 2007
  • In IEEE 802.15.4 (Low-Rate Wireless Personal Area Network) specification, a successful reception and validation of a data or MAC command frame can be confirmed with an acknowledgment. However, the specification does not support security for acknowledgment frame; the lack of a MAC covering acknowledgments allows an adversary to forge an acknowledgment for any frame. This paper proposes an identity authentication mechanism at the link layer for acknowledgment frame in IEEE 802.15.4 network. With the proposed mechanism there is only three bits for authentication, which can greatly reduce overhead of device. The encrypted bit stream for identity authentication will be transmitted to device by coordinator within association process. Statistical method and simulation results prove that our mechanism is successful in handling MAC layer attack.

A Study on the Security Framework in IoT Services for Unmanned Aerial Vehicle Networks (군집 드론망을 통한 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.897-908
    • /
    • 2018
  • In this paper, we propose a security framework for a cluster drones network using the MAVLink (Micro Air Vehicle Link) application protocol based on FANET (Flying Ad-hoc Network), which is composed of ad-hoc networks with multiple drones for IoT services such as remote sensing or disaster monitoring. Here, the drones belonging to the cluster construct a FANET network acting as WTRP (Wireless Token Ring Protocol) MAC protocol. Under this network environment, we propose an efficient algorithm applying the Lightweight Encryption Algorithm (LEA) to the CTR (Counter) operation mode of WPA2 (WiFi Protected Access 2) to encrypt the transmitted data through the MAVLink application. And we study how to apply LEA based on CBC (Cipher Block Chaining) operation mode used in WPA2 for message security tag generation. In addition, a modified Diffie-Hellman key exchange method is approached to generate a new key used for encryption and security tag generation. The proposed method and similar methods are compared and analyzed in terms of efficiency.

Integrity Verification in Vehicle Black Box Video Files with Hashing Method (차량용 블랙박스 영상파일의 무결성 검증에 해시함수 이용 방법)

  • Choi, Jin-young;Chang, Nam Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.241-249
    • /
    • 2017
  • Recently, as a vehicle black box device has propagated, it has been increasingly used as a legal proof and there are the needs to verify an integrity of the video data. However, since the black box classified as the embedded system has a small capacity and low processing speed, there are limitations to the storage of video files and the integrity verification processing. In this paper, we propose a novel method for video files integrity in the black box environment with limited resources by using lightweight hash function LSH and the security of HMAC. We also present the test results of CPU idle rate at integrity verification in vehicle black box device by implementing this method, and verify the effectiveness and practicality of the proposed method.

Design and Implementation of Arduino-based Lightweight Vibration Monitoring System (아두이노 기반의 경량 진동 모니터링 시스템 설계 및 구현)

  • Kwon, Dong-hyun;Lim, Ji-yong;Heo, Sung-uk;Oh, Am-suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.586-589
    • /
    • 2017
  • The vibration monitoring system using the sensor network is used in various fields. However, in case of the vibration of the existing products, the size of the monitoring system is increased due to the separation of the sensor data collection function and the communication function. In this paper, we design and implement a lightweight vibration monitoring system using the MQTT protocol, which is oneM2M device standard protocol for the Arduino and Ethernet modules, to monitor frequent earthquakes and vibrations in narrow places.

  • PDF

A Study on The Protection of Industrial Technology based on LDAP (LDAP기반의 산업기술 유출방지에 관한 연구)

  • Kim, Do-Hyeoung;Yoo, Jae-Hyung;Lee, Dong-Hwi;Ki, Jae-Seok;Kim, Kui-Nam J.
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.21-30
    • /
    • 2008
  • This study researched into the method that allows only the certified user and computational engineer to possibly use network resources and computing resources by implementing the system of the intensified certification and security based on LDAP(Lightweight Directory Access Protocol) directory service, that copes with incapacitation in security program due to making the security program forcibly installed, and that can correctly track down the industrial-technology exporter along with applying the user-based security policy through inter-working with the existing method for the protection of industrial technology. Through this study, the intensified method for the protection of industrial technology can be embodied by implementing the integrated infra system through strengthening the existing system of managing the protection of industrial technology, and through supplementing vulnerability to the method for the protection of industrial technology.

  • PDF

Security Enhancement of Lightweight User Authentication Scheme Using Smartcard (스마트카드를 이용한 안전한 경량급 사용자 인증 스킴의 설계)

  • Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.209-215
    • /
    • 2020
  • The environment of the Internet provides an efficient communication of the things which are connected. While internet and online service provide us many valuable benefits, online services offered and accessed remotely through internet also exposes us to many different types of security threats. Most security threats were just related to information leakage and the loss of authentication on client-server environment. In 2016, Ahmed et al. proposed an efficient lightweight remote user authentication protocol. However, Kang et al. show that it's scheme still unstable and inefficient. It cannot resist offline identity guessing attack and cannot provide session key confirmation property. Moreover, there is some risk of biometric information's recognition error. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in device. In addition, our proposed scheme should provide not only security, but also efficiency since we only use hash function and XOR operation.

Optimal Implementation of Lightweight Block Cipher PIPO on CUDA GPGPU (CUDA GPGPU 상에서 경량 블록 암호 PIPO의 최적 구현)

  • Kim, Hyun-Jun;Eum, Si-Woo;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1035-1043
    • /
    • 2022
  • With the spread of the Internet of Things (IoT), cloud computing, and big data, the need for high-speed encryption for applications is emerging. GPU optimization can be used to validate cryptographic analysis results or reduced versions theoretically obtained by the GPU in a reasonable time. In this paper, PIPO lightweight encryption implemented in various environments was implemented on GPU. Optimally implemented considering the brute force attack on PIPO. In particular, the optimization implementation applying the bit slicing technique and the GPU elements were used as much as possible. As a result, the implementation of the proposed method showed a throughput of about 19.5 billion per second in the RTX 3060 environment, achieving a throughput of about 122 times higher than that of the previous study.

Optimum LWA content in concrete based on k-value and physical-mechanical properties

  • Muda, Zakaria Che;Shafigh, Payam;Yousuf, Sumra;Mahyuddin, Norhayati Binti;Asadi, Iman
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.215-225
    • /
    • 2022
  • Thermal comfort and energy conservation are critical issues in the building sector. Energy consumption in the building sector should be reduced whilst enhancing the thermal comfort of occupants. Concrete is the most widely used construction material in buildings. Its thermal conductivity (k-value) has a direct effect on thermal comfort perception. This study aims to find the optimum value of replacing the normal aggregate with lightweight expanded clay aggregate (LECA) under high strengths and low thermal conductivity, density and water absorption. The k-value of the LECA concrete and its physical and mechanical properties have varying correlations. Results indicate that the oven-dry density, compressive strength, splitting tensile strength and k-value of concrete decrease when normal coarse aggregates are replaced with LECA. However, water absorption (initial and final) increases. Thermal conductivity and the physical and mechanical properties have a strong correlation. The statistical optimisation of the experimental data shows that the 39% replacement of normal coarse aggregate by LECA is the optimum value for maximising the compressive and splitting tensile strengths whilst maintaining the k-value, density and water absorption at a minimum.

Automatic Detection of Dead Trees Based on Lightweight YOLOv4 and UAV Imagery

  • Yuanhang Jin;Maolin Xu;Jiayuan Zheng
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.614-630
    • /
    • 2023
  • Dead trees significantly impact forest production and the ecological environment and pose constraints to the sustainable development of forests. A lightweight YOLOv4 dead tree detection algorithm based on unmanned aerial vehicle images is proposed to address current limitations in dead tree detection that rely mainly on inefficient, unsafe and easy-to-miss manual inspections. An improved logarithmic transformation method was developed in data pre-processing to display tree features in the shadows. For the model structure, the original CSPDarkNet-53 backbone feature extraction network was replaced by MobileNetV3. Some of the standard convolutional blocks in the original extraction network were replaced by depthwise separable convolution blocks. The new ReLU6 activation function replaced the original LeakyReLU activation function to make the network more robust for low-precision computations. The K-means++ clustering method was also integrated to generate anchor boxes that are more suitable for the dataset. The experimental results show that the improved algorithm achieved an accuracy of 97.33%, higher than other methods. The detection speed of the proposed approach is higher than that of YOLOv4, improving the efficiency and accuracy of the detection process.

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.