• Title/Summary/Keyword: Lightweight Authentication Protocol

Search Result 72, Processing Time 0.019 seconds

An Ultra-Lightweight RFID Authentication Protocol Using Index (인덱스를 사용한 초경량 RFID 인증 프로토콜)

  • Lee, Jae-Kang;Oh, Se-Jin;Yun, Tae-Jin;Chung, Kyung-Ho;Ahn, Kwang-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1C
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, the ultra-lightweight authentication RFID protocol that can actually implement on the RFID Tag is one among authentication protocols getting a concern, but recently many problems were clarified of the feature becase of the protocol which doesn't use the security algorithm. In this paper, we analyzed the problem of the ultra-lightweight authentication protocols and propose the design of ultra-lightweight RFID authentic ation protocols improving the index processing techniques. Because of improving the index processing technique in the method sending the Server authentication message to the authenticated tag, the proposed protocol is strong against the active attack which Li presents. Besides, the proposed protocol has the buffer storage of the keys and index and is strong against the asynchronous attack.

A New Lightweight Mutual Authentication Protocol for Home Network (홈네트워크를 위한 새로운 경량화된 상호인증 프로토콜)

  • Lee, Gi-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2384-2389
    • /
    • 2009
  • In this paper, we propose a lightweight mutual authentication protocol for secure and efficient home network service. Lee et al. recently proposed an attribute-base authentication key agreement protocol using public key in home network. Its protocol provided forward secrecy but don't diminish conspicious overhead of operation using ticket. Therefore the proposed protocol provided the security and efficiency using hash function and counter. Also it can provide secure home network service by check consumer electronics control level of users after created session key.

A Lightweight RFID Authentication Protocol Based on Hash Chain (해시체인기반의 경량화 RFID 인증 프로토콜)

  • Youn, Keun-Young;Kim, Dong-Seong;Park, Jong-Sou
    • Convergence Security Journal
    • /
    • v.6 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • It has been proposed that several RFID authentication protocols based on hash chain. Status based authentication protocol and challenge-response based authentication protocol are secured against location tracking attacks, spoofing attacks, replay attacks, traffic analysis attacks but are vulnerable to Dos attacks. RFID authentication protocol with strong resistance against traceability and denial of service attack is secured against location tracking attack, spoofing attacks, replay attacks, DoS attacks but are vulnerable to traffic analysis attacks. The present study suggests a more secure and lightweight RFID authentication protocol which is combining the advantages of hash-chain authentication protocol and RFID authentication protocol with strong resistance against traceability and denial of service attack. The results of the secure analysts for a proposed protocol are illustrated that it is secured against location tracking attacks, spoofing attacks, replay attacks, traffic analysis attacks, Dos attacks and is a lightweight operation between server and tag.

  • PDF

Lightweight DTLS Message Authentication Based on a Hash Tree (해시 트리 기반의 경량화된 DTLS 메시지 인증)

  • Lee, Boo-Hyung;Lee, Sung-Bum;Moon, Ji-Yeon;Lee, Jong-Hyouk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1969-1975
    • /
    • 2015
  • The Internet of Things (IoT), in which resource constrained devices communicate with each other, requires a lightweight security protocol. In this paper, we propose a new message authentication scheme using a hash tree for lightweight message authentication in the Datagram Transport Layer Security (DTLS) protocol. The proposed scheme provides lightweight secure operations compared with those of the DTLS protocol. Besides, it provides more suitable performance than the DTLS protocol for an IoT environment, thanks to the reduced use of message authentication code.

An Improved Lightweight Two-Factor Authentication and Key Agreement Protocol with Dynamic Identity Based on Elliptic Curve Cryptography

  • Qiu, Shuming;Xu, Guosheng;Ahmad, Haseeb;Xu, Guoai;Qiu, Xinping;Xu, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.978-1002
    • /
    • 2019
  • With the rapid development of the Internet of Things, the problem of privacy protection has been paid great attention. Recently, Nikooghadam et al. pointed out that Kumari et al.'s protocol can neither resist off-line guessing attack nor preserve user anonymity. Moreover, the authors also proposed an authentication supportive session initial protocol, claiming to resist various vulnerability attacks. Unfortunately, this paper proves that the authentication protocols of Kumari et al. and Nikooghadam et al. have neither the ability to preserve perfect forward secrecy nor the ability to resist key-compromise impersonation attack. In order to remedy such flaws in their protocols, we design a lightweight authentication protocol using elliptic curve cryptography. By way of informal security analysis, it is shown that the proposed protocol can both resist a variety of attacks and provide more security. Afterward, it is also proved that the protocol is resistant against active and passive attacks under Dolev-Yao model by means of Burrows-Abadi-Needham logic (BAN-Logic), and fulfills mutual authentication using Automated Validation of Internet Security Protocols and Applications (AVISPA) software. Subsequently, we compare the protocol with the related scheme in terms of computational complexity and security. The comparative analytics witness that the proposed protocol is more suitable for practical application scenarios.

Improved Flyweight RFID Authentication Protocol

  • Vallent, Thokozani Felix;Yoon, Eun-Jun;Kim, Hyunsung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.95-105
    • /
    • 2012
  • The widespread implementation of RFID in ubiquitous computing is constrained considerably by privacy and security unreliability of the wireless communication channel. This failure to satisfy the basic, security needs of the technology has a direct impact of the limited computational capability of the tags, which are essential for the implementation of RFID. Because the universal application of RFID means the use of low cost tags, their security is limited to lightweight cryptographic primitives. Therefore, EPCGen2, which is a class of low cost tags, has the enabling properties to support their communication protocols. This means that satisfying the security needs of EPCGen2 could ensure low cost security because EPCGen2 is a class of low cost, passive tags. In that way, a solution to the hindrance of low cost tags lies in the security of EPCGen2. To this effect, many lightweight authentication protocols have been proposed to improve the privacy and security of communication protocols suitable for low cost tags. Although many EPCgen2 compliant protocols have been proposed to ensure the security of low cost tags, the optimum security has not been guaranteed because many protocols are prone to well-known attacks or fall short of acceptable computational load. This paper proposes a remedy protocol to the flyweight RFID authentication protocol proposed by Burmester and Munilla against a desynchronization attack. Based on shared pseudorandom number generator, this protocol provides mutual authentication, anonymity, session unlinkability and forward security in addition to security against a desynchronization attack. The desirable features of this protocol are efficiency and security.

  • PDF

Lightweight Packet Authentication for Access Control in IEEE 802.11 (IEEE 802.11에서의 접근 제어를 위한 Lightweight 패킷 인증)

  • Lee, Keun-Soon;Kim, Hyo-Jin;Song, Joo-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.4
    • /
    • pp.29-38
    • /
    • 2005
  • Because IEEE 802.11 has several security vulnerabilities, IEEE 802.11i was proposed and accepted. But IEEE 802.11i has much overhead for most of users for the web surfing. Besides not only node the authentication but also the packet authentication is needed to communicate. Although IEEE 802.11i uses TKIP(Temporal Key integrity Protocol) and CCMP(CTR with CBC-MAC Protocol), they have a lot of overheads. In this paper, Lightweight Packet Authentication(LIPA) is proposed. LIPA has less overhead and short delay so that it can be affordable for simple web-surfing which does not need stronger security. After comparing performances of LIPA with those of TKIP and CCMP, LIPA is more efficient than other schemes for transmitting packets.

Gröbner Basis Attacks on Lightweight RFID Authentication Protocols

  • Han, Dae-Wan
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.691-706
    • /
    • 2011
  • Since security and privacy problems in RFID systems have attracted much attention, numerous RFID authentication protocols have been suggested. One of the various design approaches is to use light-weight logics such as bitwise Boolean operations and addition modulo $2^m$ between m-bits words. Because these operations can be implemented in a small chip area, that is the major requirement in RFID protocols, a series of protocols have been suggested conforming to this approach. In this paper, we present new attacks on these lightweight RFID authentication protocols by using the Gr$\ddot{o}$bner basis. Our attacks are superior to previous ones for the following reasons: since we do not use the specific characteristics of target protocols, they are generally applicable to various ones. Furthermore, they are so powerful that we can recover almost all secret information of the protocols. For concrete examples, we show that almost all secret variables of six RFID protocols, LMAP, $M^2AP$, EMAP, SASI, Lo et al.'s protocol, and Lee et al.'s protocol, can be recovered within a few seconds on a single PC.

A Lightweight Pseudonym Authentication and Key Agreement Protocol for Multi-medical Server Architecture in TMIS

  • Liu, Xiaoxue;Li, Yanping;Qu, Juan;Ding, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.924-944
    • /
    • 2017
  • Telecare Medical Information System (TMIS) helps the patients to gain the health monitoring information at home and access medical services over the mobile Internet. In 2015, Das et al proposed a secure and robust user AKA scheme for hierarchical multi-medical server environment in TMIS, referred to as DAKA protocol, and claimed that their protocol is against all possible attacks. In this paper, we first analyze and show DAKA protocol is vulnerable to internal attacks, impersonation attacks and stolen smart card attack. Furthermore, DAKA protocol also cannot provide confidentiality. We then propose a lightweight pseudonym AKA protocol for multi-medical server architecture in TMIS (short for PAKA). Our PAKA protocol not only keeps good security features declared by DAKA protocol, but also truly provides patient's anonymity by using pseudonym to protect sensitive information from illegal interception. Besides, our PAKA protocol can realize authentication and key agreement with energy-saving, extremely low computation cost, communication cost and fewer storage resources in smart card, medical servers and physical servers. What's more, the PAKA protocol is proved secure against known possible attacks by using Burrows-Abadi-Needham (BAN) logic. As a result, these features make PAKA protocol is very suitable for computation-limited mobile device.

A Lightweight Three-Party Privacy-preserving Authentication Key Exchange Protocol Using Smart Card

  • Li, Xiaowei;Zhang, Yuqing;Liu, Xuefeng;Cao, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1313-1327
    • /
    • 2013
  • How to make people keep both the confidentiality of the sensitive data and the privacy of their real identity in communication networks has been a hot topic in recent years. Researchers proposed privacy-preserving authenticated key exchange protocols (PPAKE) to answer this question. However, lots of PPAKE protocols need users to remember long secrets which are inconvenient for them. In this paper we propose a lightweight three-party privacy-preserving authentication key exchange (3PPAKE) protocol using smart card to address the problem. The advantages of the new 3PPAKE protocol are: 1. The only secrets that the users need to remember in the authentication are their short passwords; 2. Both of the users can negotiate a common key and keep their identity privacy, i.e., providing anonymity for both users in the communication; 3. It enjoys better performance in terms of computation cost and security. The security of the scheme is given in the random oracle model. To the best of our knowledge, the new protocol is the first provably secure authentication protocol which provides anonymity for both users in the three-party setting.