• Title/Summary/Keyword: Lightning strength

Search Result 49, Processing Time 0.035 seconds

V-t Characteristics in $SF_6-N_2$ Mixtures for Transient Impulse Voltages ($SF_6-N_2$ 혼합가스에서 과도임펄스전압에 대한 V-t특성)

  • Lee, Bok-Hui;Lee, Gyeong-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.456-465
    • /
    • 2001
  • In this paper, breakdown voltages in $SF_6-N_2$ mixtures were experimentally investigated to understand characteristics of dielectric strength and physical phenomena in nonuniform field disturbed by a needle shape protrusion. The test voltages are the lightning impulse$(\pm1.2/44 \mus)$ and the damped oscillatory impulse$(\pm400 ns / 0.83 MHz)$ voltages which can be occurred by the operation of disconnecting switches in gas-insulated switchgears(GIS). The effects of the polarity and wave shape of the test voltages, and the gas pressure on the V-t characteristics were in detail examined. The V-t characteristic curves were measured in different two ways : (1) one is the method by taking the maximum voltage recorded at or prior to breakdown against the time to breakdown, that is, the Procedures recommended in IEC 60060-1, (2) the other is the method by taking the voltage at the instant of chopping against the time to breakdown. As a result, the V-t characteristics of $SF_6-N_2$ mixtures in nonuniform electric field were significantly affected by the polarity and wave shape of the applied voltages. The positive breakdown voltages resulted in lower breakdown voltages in the time ranges considered, and the V-t curves for the negative oscillatory impulse voltage were extended over the longer time range. For the lightning impulse voltages, the V-t curves obtained by IEC Pub. 60060-1 were nearly same with the V-t curves obtained by the voltage at the instant of chopping against the time to breakdown. It is clear that the actual breakdown voltages were much lower than the maximum voltages appearing at or prior to breakdown because of the displacement current produced as a result of the dV/dt during the oscillatory transient voltage app1ication. The scattering of the negative actual breakdown voltages was much larger than that of the positive.

  • PDF

Influence of SF6/N2 Gas Mixture Ratios on the Lightning Streamer Propagation Characteristics of 22 kV MV Circuit Breaker

  • Gandhi, R.;Chandrasekar, S.;Nagarajan, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1663-1672
    • /
    • 2018
  • In recent times, gas insulated medium voltage (MV) circuit breakers (CB) form a vital component in power system network, considering its advantages such as reduced size and safety margins. Gas insulation characteristics of circuit breakers are generally measured by lightning impulse (LI) test according to IEC standard 60060-1 as a factory routine test. Considering the environmental issues of $SF_6$ gas, many research works are being carried out towards the mixture of $SF_6$ gases for high voltage insulation applications. However, few reports are only available regarding the LI withstand and streamer propagation characteristics (at both positive and negative polarity of waveform) of $SF_6/N_2$ gas mixture insulated medium voltage circuit breakers. In this paper, positive and negative polarity LI tests are carried out on 22 kV medium voltage circuit breaker filled with $SF_6/N_2$ gas mixture at different gas pressures (1-5 bar) and at different gas mixture ratios. Important LI parameters such as breakdown voltage, streamer velocity, time to breakdown and acceleration voltage are evaluated with IEC standard LI ($1.2/50{\mu}s$) waveform. Weibull distribution analysis of LI breakdown voltage data is carried out and 50% probability breakdown voltage, scale parameter and shape parameter are evaluated. Results illustrate that the $25%SF_6+75%N_2$ gas filled insulation considerably enhances the LI withstand and breakdown strength of MV circuit breakers. LI breakdown voltage of circuit breaker under negative polarity shows higher value when compared with positive polarity. Results show that maintaining the gas pressure at 0.3 MPa (3 bar) with 10% $SF_6$ gas mixed with 90% $N_2$ will give optimum lighting impulse withstand performance of 22 kV MV circuit breaker.

Structure of Station Class Lightning Arresters and Electrical Characteristics of ZnO Varistor Blocks (발변전용 피뢰기의 구조 및 ZnO 바리스터 소자의 전기적 특성)

  • Cho, Han-Goo;Han, Se-Won;Lee, Un-Yong;Yoon, Han-Soo;Choi, In-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1158-1161
    • /
    • 2004
  • This paper presents structural characteristics of station class lightning arresters and electrical characteristics of manufactured ZnO varistor blocks which are usable in those arresters. Three types of station class lightning arresters were investigated and those are a ceramic arrester, a FRP tube type polymer arrester, and a FRP rod type polymer arrester. Each arrester has merits and demerits with structural characteristics. In general, polymer arresters were made of silicon rubber for housing materials, FRP tube or rod for mechanical strength, ZnO blocks for electrical characteristics, and metal parts for electrical contact and the silicon rubber, the housing materials, was directly injected to the arrester module which was assembly composed of electrodes, ZnO blocks and FRP tube or rod, and to prevent the nonlinear electric fields distribution on upper parts of arresters, the grade ring was adopted to the upper electrodes. The reference voltage, nonlinear coefficient, residual voltage, and voltage ratio of manufactured ZnO varistors are 4.90kV, 50, 9.54kV, 1.94, respectively. Compared to designed electrical characteristics, the reference voltage was low for 600v and the voltage ratio was slightly high. However, the characteristics of discharge withstand was so excellent that the mechanical destruction does not occur at the impulse current of $8/20{\mu}s$ 10kA for 100 times.

  • PDF

Dielectric Strength of $SF_6/CF_4$ Mixture Under Standard Lightning Impulse Voltages in Non-Uniform Field (불평등 전계에서 표준 뇌 임펄스 전압의 $SF_6/CF_4$ 혼합 가스의 절연 내력)

  • Huh, Chang-Su;Sung, Heo-Gyung;Park, Shin-Woo;Hwang, Cheong-Ho;Kim, Nam-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.165-166
    • /
    • 2007
  • In these days $SF_6$ mixtures and alternative gas have been studied because of global warming and liquefying at low temperature and high pressure. At present work the breakdown characteristics of $SF_6/CF_4$ mixture in non-uniform field was performed. The experiments were carried out under positive and negative standard lightning impulse (SLT) voltages. The point-plane electrode was used with 3 mm gap distance in the test chamber. The $SF_6/CF_4$ mixture which contain 20% of $SF_6$ was compared with pure $SF_6$ and $CF_4$ gas. Experimental gas pressure ranged from 0.1 to 0.4 MPa. The breakdown voltage under negative SLI is higher than the breakdown voltage under positive voltage. And the breakdown voltage of $SF_6$ 20%, $CF_4$ 80% mixture is similar to that of pure $SF_6$.

  • PDF

Investigations on Partial Discharge, Dielectric and Thermal Characteristics of Nano SiO2 Modified Sunflower Oil for Power Transformer Applications

  • Nagendran, S.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1337-1345
    • /
    • 2018
  • The reliability of power transmission and distribution depends up on the consistency of insulation in the high voltage power transformer. In recent times, considering the drawbacks of conventional mineral oils such as poor biodegradability and poor fire safety level, several research works are being carried out on natural ester based nanofluids. Earlier research works show that sunflower oil has similar dielectric characteristics compared with mineral oil. BIOTEMP oil which is now commercially available in the market for transformers is based on sunflower oil. Addition of nanofillers in the base oil improves the dielectric characteristics of liquid insulation. Only few results are available in the literature about the insulation characteristics of nano modified natural esters. Hence understanding the influence of addition of nanofillers in the dielectric properties of sunflower oil and collecting the database is important. Considering these facts, present work contributes to investigate the important characteristics such as partial discharge, lightning impulse, breakdown strength, tandelta, volume resistivity, viscosity and thermal characteristics of $SiO_2$ nano modified sunflower oil with different wt% concentration of nano filler material varied from 0.01wt% to 0.1wt%. From the obtained results, nano modified sunflower oil shows better performance than virgin sunflower oil and hence it may be a suitable candidate for power transformer applications.

SLI, AC Breakdown Voltage Characteristics of $SF_6/CF_4$ Mixtures Gas in Nonuniform Field (불평등전계에서 $SF_6/CF_4$ 혼합 가스의 SLI, AC 절연내력 특성)

  • Hwang, Cheong-Ho;Sung, Heo-Gyung;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.245-251
    • /
    • 2008
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field was performed. The experiments were carried out under AC voltage and standard lightning impulse(SLI) voltage. Breakdown characteristics were investigated for $SF_6/CF_4$ mixtures when AC voltages and standard lighting impulse voltage was applied in a needle-plane. The needle-plane electrode whose gap distance was 3 mm were used in a test chamber. $SF_6/CF_4$ mixtures contained from 0 to 100% $SF_6$ and the experimental gas pressure ranged from 0.1 to 0.5 MPa. The breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field may be influenced by defects like needle-shaped protrusions. In case of slowly rising SLI voltage and AC voltage it is enhanced by corona-stabilization. This phenomena caused by the ion drift during streamer development and the resulting space-charge is investigated. In non-uniform field under negative SLI voltage the breakdown voltage was increase linearly but under positive SLI voltage the breakdown voltage increase non-linearly. The breakdown voltage in needle-plane electrode displayed N shape characteristics for increasing the content of $SF_6$ at AC voltage. $SF_6/CF_4$ mixture has good dielectric strength and arc-extinguishing properties than pure SF6. This paper presents experimental results on breakdown characteristics for various mixtures of $SF_6/CF_4$ at practical pressures. We could make an environment friendly gas insulation material with maintaining dielectric strength by combing $SF_6\;and\;CF_4$ which generates a lower lever of the global warming effect.

Experimental Research on Impulse Breakdown Characteristics of Soil

  • Lee, Jaebok;Sughun Chang;Sungho Myung;Yuengue Cho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.60-63
    • /
    • 2004
  • The electrical breakdown characteristics of different types of soil samples have been measured. It is shown that the threshold soil breakdown strength is affected by many factors, such as types of soil, grain size, and soil compaction. The breakdown process in the test soil samples appears to be due to air ionization in the voids between the soil particles. The results have been compared with the relevant experimental results of other researchers.

The Control of the Magnetic Field around Down Conductors (인하도선 주변에서 발생하는 자장의 억제)

  • Lee, Bok-Hee;Kang, Sung-Man;Lee, Seung-Chil;Eom, Ju-Hong;Lee, Kyoung-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.216-218
    • /
    • 2001
  • This paper deals with the control of magnetic field around the down conductor of lightning protection systems. The magnetic field strength in the vicinity of down conductor is shown to drop off rapidly with distance from the down conductor and is reversely proportional to the number of down conductor. Also the magnetic field strength is decreased in the structures as the down conductor is installed with the symmetrical arrangement, and it is zero at the center of symmetry. The magnetic field strengths for the symmetrical arrangement of two down conductors are less than one half compared with that for a down conductor. A proper arrangement of down conductor can reduce or cancel the magnetic field in a restricted place where information-oriented and computerized facilities are densely installed.

  • PDF

Dielectric Breakdown Characteristics of PPLP and GFRP for HTS DC Cable System (고온초전도 DC 케이블 시스템용 PPLP 및 GFRP의 절연 특성)

  • Kim, S.H.;Choi, J.H.;Kim, W.J.;Jang, H.M.;Lee, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.5-9
    • /
    • 2011
  • DC high-temperature superconducting(HTS) cable system has attracted a great deal of interest from the view point of low loss, dense structure and large capacity. A HTS cable system is made of cable and termination. The insulating materials and insulation technology must be solved for the long life, reliability and compact of cable system. In this paper, we will report on the dielectric breakdown characteristics of insulating materials for HTS cable and termination. The AC, DC and lightning impulse breakdown strength of laminated polypropylene paper(PPLP) and glass fiber reinforced plastic(GFRP) have been measured under nitrogen pressures in the range of 0.l-0.4MPa. PPLP and GFRP are found to have a significantly higher DC breakdown strength. Also, DC surface flashover voltage of negative polarity is slightly higher than that of positive polarity in GFRP.

Applied Technology of FRP Single Pole for Power Distribution Line (배전용 지지물의 FRP 적용 기술)

  • 박기호;조한구;한동희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.79-81
    • /
    • 2000
  • Outdoor insulation of overhead distribution lines with wood, concrete and steel pole has been safety under various environmental conditions including contamination, moisture condensation, rain and lightning overvoltages. In this paper introduce to FRP technology of the power distribution single pole. FRP pole has been used very much as high strength material for insulators because of its high strength and good insulation properties. In addition, FRP pole was made by filament winding method. In a filament winding process, a band of continuous resin-impregnated rovings or monofilaments is wrapped around a rotating mandrel and cured to produce axisymmetric hollow parts.

  • PDF