• Title/Summary/Keyword: Lightning Impulse

Search Result 228, Processing Time 0.026 seconds

Transient Impedance Characteristics of Grounding Rods (봉상접지극의 과도임피던스 특성)

  • 김일권;송재용;길경석;권장우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.133-143
    • /
    • 2001
  • This paper describes the correlation of the transient impedance and its parameters with the stationary resistance of a grounding system to a square pulse current and a lightning impulse current. In the experiment, the grounding system consists of a single grounding rod$(\Psi10[mm], 1[m])$and/or a triple-grounding rods of equilateral triangles with 5[m] spacing for operation. To analyze the transient impedance characteristics of the grounding system, a pulse generator which can produce square wave of a 30[ns] rise-time and a $20[\mus] $pulse duration is designed and fabricated. The injected content in the grounding system and the developed potential were recorded, and the time variation of the transient impedance were calculated as the ratio of the potential rising to the injected current at each time. The transient impedance and the effective surge impedance Z3 which defines economic protection level in power system were quite higher than the stationary resistance. The grounding impedance is decreased by the application of the triple-rods grounding system, and its effect is decreased as the frequency of the current is increased due to the inductance of the grounding leads.

  • PDF

The real nature of the West Wind in Shelley's Ode to the West Wind (셸리의 Ode to the West Wind에 나타난 서풍의 실체)

  • Jeon, Woong-Ju
    • English Language & Literature Teaching
    • /
    • no.5
    • /
    • pp.259-272
    • /
    • 1999
  • The real nature of the west wind in Shelley's Ode to the West Wind is the divine providence which influences all things in this world- that is, whether they are on land, in the sky, or in the sea. The divine providence is the manifestation of something beyond the present and tangibel object. In the first stanza, the real nature of the west wind in this poem is the wild wind, the breath of Autumn's being, the unseen presence, the azure sister of the Spring, a Destroyer, a Preserver, the winged seed, a creator, a philosopher, a poet, Shelley, and the wild spirit moving everywhere. In the second stanza, the real nature of the west wind in this poem is cloud, the angel of rain and lightning, fierce Maenad, the approaching storm, the congregated might, the black rain, the fire, hail, solid atmosphere, the tremendous power of revolutionary change, and the power that influences all things in the sky. In the third stanza, the real nature of the west wind in this poem is the voice that makes the oozy woods which wear the sapless foliage of the Atlantic, and the power makes the blue Mediterranean wake from his summer dream. the fit medium of expression which Shelley's soul was seeking for, Shelley's passion, Shelley's partner, Shelley's co-worker, and a strong presence which influences in the sea. In the fourth stanza, the real nature of the west wind in this poem is the mightest presence, the power, the strength, the free presence, the uncontrollable, the wanderer over heaven, a vision, the tameless, the swift, the proud and the God who can save Shelley form the heavy weight of hours and lift Shelley as a wave a leaf, a cloud. In the fifth stanza, the real nature of the west wind in this poem is the mighty harmony, the fierce Spirit, Shelley's spirit, the impetuous spirit, incanation of this verse, spark, the trumpet of a prophecy, the Providence which can make the Winter depart and call Spring, and the prophet. To conclude, the real nature of the west wind in this poem is Shelley's accumulated insight that he visulize his impulse of revolutionary thought.

  • PDF

Analysis on the dielectric characteristics of a composite insulation system composed of LN2 and GN2

  • Kim, Junil;Lee, Onyou;Mo, Young Kyu;Bang, Seungmin;Kang, Jong O;Lee, Hongseok;Nam, Seokho;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.33-36
    • /
    • 2015
  • A liquid nitrogen ($LN_2$) is usually used to be a coolant and insulant for a HTS coil system. HTS wires for a superconducting apparatus may be surrounded by gaseous nitrogen ($GN_2$) due to film boiling generated by a quench or voids occurred by electrical breakdown. The increased maximum electric field intensity at $GN_2$ may result in the degradation of dielectric strength of a HTS coil system. In this paper, a study on the dielectric characteristics of a composite insulation system composed of $LN_2$ and $GN_2$ is performed. A sphere-to-plane electrode system made with stainless steel is used to perform the experiments under AC and lightning impulse voltage condition. A sphere electrode is surrounded by $GN_2$ and a plane electrode is immersed into $LN_2$ to conduct dielectric experiments with a composite insulation system. The dielectric experiments are performed according to the level of $LN_2$ from the plane electrode to a sphere electrode. It is found that the dielectric characteristics of a composite insulation system are dependent on the level of $LN_2$ and the field utilization factor of an electrode system.

Analysis on the Dielectric Characteristics of $SF_6$ Gas for Developing a High Voltage Superconducting Coil (고전압 초전도코일 개발을 위한 이용률에 따른 $SF_6$가스의 절연특성에 관한 연구)

  • Nam, Seok-Ho;Hong, Jong-Gi;Heo, Jeong-Il;Kang, Hyoung-Ku
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.189-194
    • /
    • 2012
  • Studies on the development of high voltage superconducting apparatuses, such as transmission superconducting fault current limiters (SFCLs) and superconducting cables, have been performed worldwide. In this paper, a study on the electrical insulation characteristics of electro negative gas according to various pressures and utilization factors was conducted as a part of developing a high voltage superconducting coil with a sub-cooled nitrogen cooling system. Some gases such as helium (He), nitrogen ($N_2$), and sulfur hexafluoride ($SF_6$) are considered for pressurizing the sub-cooled nitrogen cooling system of high voltage SFCLs and superconducting cables. $SF_6$ is used to pressurize and enhance the dielectric performance of a superconducting system of a sub-cooled nitrogen cooling system for superconducting cables being developed in the Republic of Korea. In this paper, dielectric experiments on AC voltage, as well as lightning impulse voltage of $SF_6$, are conducted according to various utilization factors by using several kinds of sphere-to-plane electrode systems. As results, it is known that the empirical formulae of $SF_6$, known as an electro negative gas, are derived according to various pressures and utilization factors. Also, the appropriate pressure condition for designing a high voltage superconducting coil is found from the viewpoint of dielectric performance.

Deterioration Characteristics and an On-Line Diagnostic Equipment for Surge Protective Devices (서지 보호기의 열화 특성과 온라인 진단장치)

  • Park, Kyoung-Soo;Wang, Guoming;Hwang, Seong-Cheol;Kim, Sun-Jae;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.635-640
    • /
    • 2016
  • This paper dealt with the deterioration characteristics and an on-line diagnosis equipment for SPDs (surge protective devices). An accelerated aging test was carried out using a $8/20{\mu}s$ standard lightning impulse current to analyze the changes of electrical characteristics and to propose the diagnostic parameters and the criterion for deterioration of ZnO varistor which is the core component of SPDs. Based on the experimental results, an on-line diagnosis equipment for SPD was fabricated, which can measure the total leakage current, reference and clamping voltage. The leakage current measurement circuit was designed using a low-noise amplifier and a clamp type ZCT. A linear controller, the leakage current measurement part and a HVDC were used in the measurement of reference voltage. The measurement circuit of clamping voltage consisted of a surge generator and a coupling circuit. In a calibration process, measurement error of the prototype equipment was less than 3%.

Tracking Performance Test of Polymer Insulator with Salt Solution which is added Surface Active Agent (계면활성제가 첨가된 염수용액에 따른 폴리머 애자의 트래킹 성능 평가)

  • Cho, Han-Goo;Lee, Un-Yong;Han, Dong-Hee;Kang, Sung-Hwa;Choi, In-Hyuk;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.62-67
    • /
    • 2005
  • Recently, polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. Aging test to estimate life property of polymer insulator is executed through several international standard such as IEC 61109 and CEA tracking wheel test, but is not getting clear conclusion yet. There are two methods in the diagnosis method of polymer insulator such as off-line and on-line. The diagnosis methods in off-line are external condition analysis by the eye, contaminant analysis on surface, surface analysis, pollution withstand voltage test, power frequency flashover voltage test, lightning impulse flashover test, tensile fracture load test and flexural load test. Polymer material is also investigated it's tracking resistance by adding surface active agent in IEC 587. In this paper, the tracking performance of polymer insulator with salt solution which is added surface active agent. The diagnosis of insulator sample has been analyzed by leakage current and visual examination, STRI guide and thermal image camera.

An Investigation on Surface Flashover Characteristics of FRP in Several Insulation Gases for the Spacer of Cryogenic Bushing

  • Hwang, Jae-Sang;Shin, Woo-Ju;Seong, Jae-Kyu;Lee, Jong-Geon;Lee, Bang-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.20-23
    • /
    • 2012
  • Superconducting equipment has been actively investigated for securing the environment and energy technology (ET) in various parts of the world. Despite these movements, a high voltage cryogenic bushing, which plays an important role of interconnection between the electric power systems and superconducting devices, has not been fully developed due to severe insulation requirements. A gas insulated cryogenic bushing has been investigated as one of our projects since 2010. As a basic step to obtain the design parameters for cryogenic bushing, we focused on the surface flashover characteristics of glass fiber reinforced plastic (FRP) in several insulation gases. For the surface flashover tests, several insulation gases including $SF_6$, $CF_4$ and $N_2$ gas were prepared. Various length of FRP specimens were fabricated in order to obtain the fundamental data for creepage distance of FRP. The first specimen group was from 2 mm to 10 mm with 2 mm intervals and the second specimen group was from 20 mm to 100 mm with 20 mm intervals. And the gas pressure was varied from 1 bar to 4 bar. An AC overvoltage test and a lightning impulse test were performed. Then the experimental results of surface flashover were obtained and analyzed. Based on these results, it would be possible to design the optimum creepage distance of FRP in a cryogenic bushing.

Evaluation of Material Characteristics of Suspension-Type Porcelain Insulators for 154 KV Power Transmission Lines

  • Choi, In-Hyuk;Park, Joon-Young;Kim, Tae-gyun;Yoon, Yong-Beum;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.207-210
    • /
    • 2017
  • The suspension arrangement of insulators provides flexibility and assists in power transmission in transmission lines. The performance of the insulator string is strongly influenced by the environmental conditions to which it is exposed, its shape and the inherent material properties of suspension-type insulators. The suspension-type insulators are mostly made from glass, porcelain and ceramic material due to their high resistivity. Irregularity in charge distribution throughout the porcelain insulator may lead to accelerated aging and electrical breakdown. A very high and steep lightning impulse voltage may also cause breakdown of suspension-type insulators. We investigated various material characteristics such as alumina addition, surface morphology, x-ray diffraction pattern and relative density of suspension porcelain insulators manufactured in 1989 (36,000 lbs.), 1995 (36,000 lbs.) and 2001 (36,000 lbs.) by the KRI Company for use in 154 kV high power transmission lines. We compared the material characteristics of these porcelain insulators with that of the top-of-the-line porcelain insulators (36,000 lbs.) manufactured by the NGK Company in 2000. These suspension-type porcelain insulators were exposed to arc and flashover tests to examine their electrical and mechanical strength. It was noted that alumina addition (17 wt.%) for K-2001 was one of the major contributors to the enhancement of the performance of the porcelain insulators and to their ability to withstand very high current generation during the arc test. The porcelain insulators manufactured during 2001 also showed the highest relative density of 95.8% as compared to the other insulators manufactured in 1989 and 1995 respectively 94.2% and 91.5%. We also discuss reports of various failure modes of suspension-type porcelain insulators.