• 제목/요약/키워드: Lighting impulse residual voltage

검색결과 2건 처리시간 0.015초

배전급 피뢰기용 ZnO 바리스터 소자의 미세구조 및 서지 특성에 관한 연구 (A Study on the microstructure and Surge Characteristics of ZnO varistors for distribution Arrester)

  • 김석수;조한구;박태곤;박춘현;정세영;김병규
    • 한국전기전자재료학회논문지
    • /
    • 제15권2호
    • /
    • pp.190-197
    • /
    • 2002
  • In this thesis, ZnO varistors with various formulation, such as A∼E, were fabricated according to ceramic fabrication method. The microstructure, electrical properties, and surge characteristics of ZnO varistors were investigated according to ZnO varistors with various formulation. In the microstructure, A∼E\`s ZnO varistor ceramics sintered at 1130$\^{C}$ was consisted of ZnO grain(ZnO), spinel phase (Zn$\_$2.33/Sb$\_$0.67/O$\_$4/), Bi-rich phase(Bi$_2$O$_3$) and intergranuler phase, wholly. Lightning impulse residual voltage of A, B, C and E\`s ZnO varistors suited standard characteristics, below 12kV at current of 5kA. On the contrary, D\`s ZnO varistor exhibited high residual voltage as high reference voltage. In the accelerated aging test, leakage current and watt loss of B, C and D\`s ZnO varistors increases abruptly with stress time under the first a.c. stress(115$\^{C}$/3.213kV/300h). Consequently, C varistor exhibited a thermal run away. On the contrary, leakage current and watt loss of A and C\`s ZnO varistors which show low initial leakage current exhibited constant characteristics. After high current impulse test, A\`s ZnO varistor has broken the side of varistor but impulse current flowed. On the contrary, E\`s ZnO Varistor exhibited good discharge characteristics which the appearance of varistor was not wrong such as puncture, flashover, creaking and other significant damage. After long duration impulse current test, E\`s ZnO varistor exhibited good discharge characteristics which the appearance of varistor was not wrong such as puncture, flashover, creaking and other significant damage. After high current impulse test and long duration impulse current test, E\`s ZnO varistor exhibited very good characteristics which variation rate of residual voltage is 1.4% before and after test.

ZnO 나노분말로 제조한 Bi계 바리스터의 써지내량 특성 (Characteristics on the Surge Capability of Bi-based Varistor Fabricated with ZnO Nano-powder)

  • 왕민성;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.862-867
    • /
    • 2006
  • Bi-based nano-varistors and micro-varistors fabricated with each ZnO nano-powder and micro-powder were studied about characteristics on the surge capability in this study. ZnO nano-varistors were sintered in air at $1050^{\circ}C$ for 2 hr. The voltage-current and residual voltage properties of ZnO nano-varistor were compared with their of ZnO micrio-varistor. As a result of these properties, our ZnO nano-varistor has about 3 times at operating voltage as compared with conventional ZnO varistor fabricated with micro-powder and the residual voltage was 8.06 kV at nominal discharge current 101kA in the lighting impulse current test. And then the residual voltage rate 1.72 of our nano-varistor has had better performance than the 1.79 of micro-varistor because ZnO nano-varistor has shown much quick response property because of increasing effective cross-section area. Also, to analysis surge capability took thermal images for pyrexia temperature distribution with each of the varistors after operating varistors. Nano-varistor doesn't have shown local overheating and can confirm accurate temperature grade on the surface of its.