• Title/Summary/Keyword: LightTools

Search Result 306, Processing Time 0.029 seconds

Controversies on the Usefulness of Nerve Conduction Study in the Early Diagnosis of Diabetic Polyneuropathy: Pros (당뇨병성 다발신경병증의 조기 진단에서 신경전도검사의 유용성에 관한 논란: 긍정적인 관점에서)

  • Kwon, Ohyun
    • Annals of Clinical Neurophysiology
    • /
    • v.10 no.1
    • /
    • pp.29-32
    • /
    • 2008
  • Although various criteria on the diagnosis of diabetic neuropathy are applied from trial to trial, being tailored in concert with its purpose, the utmost evidences of the diagnosis are subjective symptoms and objective signs of neurologic deficit. The application and interpretation of auxiliary electrophysiological test including nerve conduction study (NCS) should be made on the context of clinical pictures. The evaluation of the functions of small, thinly myelinated or unmyelinated nerve fibers has been increasingly stressed recently with the advent of newer techniques, e.g., measurement of intraepidermal fiber density, quantitative sensory testing, and autonomic function test. And the studies with those techniques have shed light to the nature of the evolution of diabetic neuropathy. The practical application of these techniques to the diagnosis of diabetic neuropathy in the individual patients, however, should be made cautiously due to several shortcomings: limited accessibility, wide overlapping zone between norm and abnormality with resultant unsatisfactory sensitivity and specificity, difficulty in performing subsequent tests, unproven quantitative correlation with clinical deficit, and invasiveness of some technique. NCS, as an extension of clinical examination, is still the most reliable electrophysiological test in evaluating neuropathy and gives the invaluable information about the nature of neuropathy, whereas the newer techniques need more refinement of the procedure and interpretation, and the accumulation of large scaled data of application to be considered as established diagnostic tools of peripheral neuropathy.

  • PDF

Revisiting the Vāstupuruṣamaṇḍala in Hindu Temples, and Its Meanings

  • Kim, Young Jae
    • Architectural research
    • /
    • v.16 no.2
    • /
    • pp.45-56
    • /
    • 2014
  • The objective of this article, positively recognizing existing researches, is to revisit some aspects regarding the Vāstupuruṣamaṇḍala with a square grid work which is a fundamental planning guideline to control the construction of a Hindu temple and a mathematical doctrine to lead ritual programs. Hence, this paper suggests some reservations as to certain details such as temple constructions. In order to lay hold on its meaning, this paper touches upon the specific matters about the Vāstupuruṣamaṇḍala in the building construction of Hindu temples, which set out to shed light on four concerns; first, it explores the formation process of the Vāstupuruṣamaṇḍala in concert with the evolution of Hindu temples over time; second, it considers differences and similarities in comparison with other texts intimately articulated with the construction of temples, and then understands the relationship between their local languages and applications to the Vāstupuruṣamaṇḍala; third, it examines the symbolic and sanctified process of the temple's construction on the Vāstupuruṣamaṇḍala grids with two- or three-dimensional computer graphics (by means of the Auto Cad and Rhino tools), invisibly situating the divinities within it and illuminating the roles of ornamentation in the structural terms of temples; fourth, it presents that there are another rules on the building construction based upon architect-priest's craftsmanship skilled as a stonemason or a carpenter in the manual processes of the temples' construction for proper measurements and truncations of stone and wood closely linked together structural stability of completed temples. In conclusion, proceeding from what has been said above, this thesis shows that the Vāstupuruṣamaṇḍala grid includes both practical and spiritual meanings to construct a Hindu temple.

Application of a new neutronics/thermal-hydraulics coupled code for steady state analysis of light water reactors

  • Safavi, Amir;Esteki, Mohammad Hossein;Mirvakili, Seyed Mohammad;Arani, Mehdi Khaki
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1603-1610
    • /
    • 2020
  • Due to ever-growing advancements in computers and relatively easy access to them, many efforts have been made to develop high-fidelity, high-performance, multi-physics tools, which play a crucial role in the design and operation of nuclear reactors. For this purpose in this study, the neutronic Monte Carlo and thermal-hydraulic sub-channel codes entitled MCNP and COBRA-EN, respectively, were applied for external coupling with each other. The coupled code was validated by code-to-code comparison with the internal couplings between MCNP5 and SUBCHANFLOW as well as MCNP6 and CTF. The simulation results of all code systems were in good agreement with each other. Then, as the second problem, the core of the VVER-1000 v446 reactor was simulated by the MCNP4C/COBRA-EN coupled code to measure the capability of the developed code to calculate the neutronic and thermohydraulic parameters of real and industrial cases. The simulation results of VVER-1000 core were compared with FSAR and another numerical solution of this benchmark. The obtained results showed that the ability of the MCNP4C/COBRA-EN code for estimating the neutronic and thermohydraulic parameters was very satisfactory.

Tools for Light Curve of Exoplanet Transit Observation with Youth

  • Kang, Wonseok;Kim, Taewoo;Yoo, Jihyun;Kim, Jeong-eun;Kang, Min;Noh, Hannah
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.70.2-70.2
    • /
    • 2017
  • Transit event of exoplanet is a good example of observational studies with youth, because the event is geometrically simple and its analysis is essential to astronomical observation. Therefore, we developed the package of data reduction and aperture photometry in Python for educational purpose. In 27 July, we observed the transit event of TrES-3b with the students of "NYSC Space Science Club" program, and presented the Python package, PyPhotW for data reduction and aperture photometry. PyPhotW consists of simple functions for youth to understand the processes easier. Nonetheless, the photometric results of PyPhotW show a good agreement with those of Source Extractor, ${\Delta}m{\sim}-0.01{\pm}0.03$ and $-0.04{\pm}0.08$ for TrES-3b and TrES-5b time-series observations in 27 - 28 July.

  • PDF

Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • Lee, Sang-Jin;Park, Won-Kyu;Lee, Sang-Tae;Lee, Woo-Young;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

The Effect of Shot peening for Corrosion Fatigue Characteristics of Spring Steel Using as Suspension Material (현가장치재 스프링강의 부식피로특성에 미치는 쇼트피닝 가공효과)

  • Park, Kyeong-Dong;Lee, Ju-Yeong;Ki, Woo-Tae;Shin, Yeong-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.62-70
    • /
    • 2007
  • The development of new materials that are light-weight, yet high in strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. The fatigue crack growth rate of the Shot-peened material was lower than that of the Un-peened material. And in stage I, threshold stress intensity factor of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. And Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Combustion Fluid Field Visualization Using PIV and Related Problems (연소 유동장의 PIV 가시화 측정과 제반 문제들)

  • Kim, Young-Han;Yoon, Young-Bin;Jeung, In-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.504-511
    • /
    • 2000
  • PIV(Particle Image Velocimetry) is a recently developed technique for visualizing the fluid velocity fields. Because it has several advantages over the LDV(Laser Doppler Velocimetry), it became one of the most popular diagnostic tools in spite of its short history. However, its application to combustion is restricted by some problems such as flame illumination, scattered light refraction, particle density variation due to heat release, the combined effect of abrupt change in particle density and fluid velocity on flame contour, and thermophoresis which is particle lagging due to temperature gradient. These problems are expected to be originated from the non-continuous characteristics of flames and the limitations of particle dynamics. In the present study, these problems were considered for the visualization of the instantaneous coaxial hydrogen diffusion flame. And the instantaneous flame contour was detected using particle density difference. The visualized diffusion flame velocity field shows its turbulent and meandering nature. It was also observed that the flame is located inside the outer shear layer and flame geometry is largely influenced by the vorticity.

A Study on the Characteristic of Color use Scheme in Luis Barragan's Architecture (루이스 바라간 건축의 색채사용 특성에 관한 연구)

  • Yoo, Yeon-Sook
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.416-425
    • /
    • 2013
  • Luis Barragan's Architecture has creative feature that Mexican environment and traditional culture were complete by color. Thus the color of his work makes our emotions rich and colorful. He said "My architecture is autobiographical..." at speech in Pritz price. As we can see in his architectural philosophy that sentimental architecture is important than theorical system, his works are impression of empirical factor with intuition. "Color is a complement to the architecture. It serve to enlarge or reduce a space. It's also useful for adding that touch of magic a place needs", stated Barragan. During his process of shaping space, Barragan drew on color in the same way as an architectural component, according it a spatial funtion and expressive vale. he allied it with light, deeming it a crucial vehical for conveying the emotive attributes a site. The capacity of color to express sensitivity and sensuality within an architecture space is liked to its psycho-physiological qualities. In this kind of view, color featyre in Barragan's work is one of the most important tools to realize sentimental architecture, not only is result of the Mexican regional color. As a result, make focus on analyzing various meaning of the color in Barragan's architecture like poetic and habitable structure.

  • PDF

Adopting Design Thinking for Website Innovation: Case Studies of Korean Award Winners

  • Kim, Yu-Jin
    • Science of Emotion and Sensibility
    • /
    • v.23 no.1
    • /
    • pp.57-68
    • /
    • 2020
  • This research investigates how digital design agencies and client companies incorporate design thinking-a human-centered approach to solving difficult problems-into their website development processes. Based on a literature review on the design-thinking-driven web development process, multiple case studies of award-winning website projects were performed by in-depth interviews with key practitioners. Through analyses of these cases, their user-centered approaches for website innovation were identified according to the following four phases: web planning (discovery and defining phases) and web design and development (development and delivery phases). Moreover, distinct approaches of design thinking practices were identified according to two website types: a brand promotion website with a killer brand storytelling approach; and a service channel website with a strategic UI/UX-driven approach. Next, the key success drivers of these website projects were suggested in light of the typical themes of design thinking (i.e., human centeredness, research based, context awareness, and collaboration). Some practical limitations were also found in adopting the design-thinking-driven web development process, such as limited research methods and tools, and insufficient prototyping and experimentation. Along with these limitations, it was also discovered that current digital design agencies still face the following challenges in adopting the design-thinking-driven web development process: building a long-term, playful partnership with clients; leveraging decision-makers' design thinking awareness; and coping with limited resources (design thinking practitioners, budgets, and schedules).