• Title/Summary/Keyword: Light-weight Structures

Search Result 285, Processing Time 0.026 seconds

Optimal Design of Long-fiber Composite Cover Plate with Ribs (리브를 가진 장섬유 복합재료 커버 플레이트의 최적설계)

  • Han, Min-Gu;Bae, Ji-Hun;Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 2017
  • Carbon fiber reinforced composites have light weight and high mechanical properties. These materials are only applicable in limited shape structure cause by complex curing process and low drapability. To solve this problem, Long Fiber Prepreg Sheet (LFPS) has been proposed. In this research, electric device cover plate was selected and designed by using LFPS. Before the design process, we analyzed the target structure to which the rib structures were applied. And 8-inch tablet PC product was selected. For FE analysis, simple loading and boundary conditions were applied. Stiffness of rib structure was investigated according to the rib pattern and shape changes. Rib pattern and shape were selected based on fixed volume condition analysis results. And uneven rib width model was selected for the best case whose deflection was reduced 6~10% than uniform rib model.

Basic Study on Fiber Composite Panel Production for Impact·Blast Resistant (방호·방폭 보강용 복합섬유 패널 제작을 위한 기초연구)

  • Kim, Woonhak;Kang, Seokwon;Yun, Seunggyu
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.235-243
    • /
    • 2015
  • The methods to improve the protection and explosion-proof performance of concrete structures include the backside reinforcement or concrete material property improvement and the addition of structural members or supports to increase the resistance performance, but they are inefficient in terms of economics and structural characteristics. This study is about the basic study on the fiber composite panel cover, and the nano-composite material and adhesive as the filler, to maximize the specific performance of each layer and the protection and explosion-proof performance as the composite panel component by improving the tensile strength, light weight, adhesion and fire-proof performances. The fiber composite panel cover (aramid-polyester ratios of 6:4 and 6.5:3.5) had a 2,348 MPa maximum tensile strength and a 1.8% maximum elongation. The filler that contained the nano-composite material and adhesive had a 4 MPa maximum tensile shear adhesive strength. In addition, the nano-composite filler was 30% lighter than the normal portland cement

Photogrammetry 기법을 활용한 MSC 설치면의 정밀 측정

  • Woo, Sung-Hyun;Kim, Hong-Bae;Moon, Sang-Mu;Im, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.126-133
    • /
    • 2004
  • Photogrammetry, as its name implies, is a 3-dimensional coordinate measuring technique that uses photographs as the fundamental medium for metrology. In the last few years the accuracy of photogrammetry has increased dramatically thanks to the rapid advance of digital camera manufacturing technique. This paper discusses photogrammetric measurement of the interface surface of MSC(Multi-Spectral Camera), which is a main payload of KOMPSAT-2. Total 24 paper targets on the objective surfaces and two scale bars calibrated with high accuracy were used for measurement, and multiple images were taken from 11 different camera angles by using a spacecraft rotation dolly. As a result of analysis, 3D coordinates of each targeted point were obtained and the flatness value based on the selected reference plane was calculated and compared with the pre-determined requirement. The technique acquired by this study is expected to be used for the 3D precise measurement of ultra-light weight and inflatable space structures such as a satellite antenna and a solar array.

  • PDF

Buckling Test and Non-linear Analysis of Aluminium Isogrid Panel (알루미늄 lsogrid 패널의 좌굴시험 및 비선형 해석)

  • Yoo, Joon-Tae;Lee, Jong-Woong;Yoon, Jong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2005
  • There are many methods to reinforce the cylindrical structure for light weight design like skin-stringer and semi-monocoque. Isogrid is one of the reinforced structures to improve buckling load. Isogrid has many advantages for complex load case, internal pressure and concentrated load.In this paper, compressive buckling test and non-linear FE analysis of the isogrid panel are described. Diameter of panel is 2.4m and thickness of plate is 11.43mm. The angle which the panel accomplish is about 70 degrees and, its height is about 660mm. Local buckling, global buckling and variation of stiffness after local buckling were observed during buckling test of the panel. MSC/MARC is used for non-linear FE analysis. When analysis, initial imperfection of panel which occurred during plastic forming is considered. The results of analysis for buckling mode and buckling load have good agreements with test.

Fatigue Capacity of Concrete Beams Prestressed with Partially Bonded CFRP Tendons (CFRP 긴장재로 긴장된 부분비부착 콘크리트 보의 피로 성능)

  • Jeong, Sang-Mo;Lee, Cha-Don;Park, Sang-Yeol;Jeong, Yo-Sok;Park, Dong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.333-336
    • /
    • 2008
  • CFRP tendons have been attempted in concrete structures as a substitute for steel tendons considering their many advantages such as the corrosion-resistance, light weight etc. However, the elastic behavior up to failure is likely to result in ductility problems. To overcome such problems, prestress concrete beams with partially bonded tendons have been developed and suggested. In this new system, the un-bonded part near the mid-span contributes to the improvement of ductility. And the bonded parts at both ends play a role as a safe anchorage. According to the previous research on the static behavior, the suggested method has demonstrated enough ductility and strength. However it is essential to verify the long-term safety for repetitive fatigue loads under service states. For this purpose, flexural fatigue loading tests were carried out in this research. This paper includes an experimental investigation on the static load-carrying capacities of the beams with or without fatigue tests. The results showed that the beams prestressed with partially bonded CFRP tendons possessed good fatigue capacity under the constant cyclic loads.

  • PDF

Ultimate Strength varying the Yield Stress of a Ship's Plate (선체판의 항복응력 변화에 따른 최종강도거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.179-183
    • /
    • 2005
  • The High-tensile steel has been recognized as a promising concept for structural design of light weight transportation systems such as aircraft high speed trains and fast ships. Using the high-tensile steel has been widely used in ship structures, and this enables to reduce the plate thickness. Using the high-tensile steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behavior of plate above primary buckling load is important. In this study, examined closely secondary buckling behavior after initial buckling of thin plate structure which operated compressive load according to the various kinds of yield stress with simply supported boundary condition. Analysis method is F.E.M by commercial program(ANSYS V7.1) and complicated nonlinear behaviour can analyze using art-length method about secondary buckling.

  • PDF

Experimental Study on Bond Strength between Carbon Fiber Sheet and Concrete (탄소섬유쉬트와 콘크리트의 부착강도 실험연구)

  • 유영찬;최기선;최근도;이한승;김긍환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.168-174
    • /
    • 2001
  • Carbon fiber sheet(CFS) has been widely used for strengthening of the concrete building structures due to its excellent physical properties such as high strength, light weight and high durability. Bond strength or behavior, on the other hands, between carbon fiber sheet and concrete is very important in strengthening the concrete member using CFS. Therefore the bond failure mechanism between CFS and concrete should be fully verified and understood. This study is to investigate the bond strength of CFS to the concrete by the direct pull-out test and the tensile-shear test. In the direct pull-out tests, the bond strength under the various environmental conditions such as curing temperature, surface condition on concrete and water content of concrete are evaluated. Also, the effective bond length, lu and the average bond stress, $\tau$y are examined in the tensile-shear tests. Based on the test results, it is concluded that the curing temperature is the most critical element for the bond strength between CFS and concrete. And, the proper value of lu and $\tau$y is recommended with 15 cm and 9.78∼ 11.88 kgf/$\textrm{cm}^2$ respectively.

Preparation and Characterization of Swallow-Tail Terrylene Bisimide as Organic Phosphor (Swallow-Tail Terrylene Bisimide 적색 유기 형광체 제조 및 특성 연구)

  • Jung, Sung Bong;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.194-200
    • /
    • 2020
  • Perylene bisimide derivatives are developed for red organic phosphor because of their advantages, such as excellent luminous efficiency and high thermal stability. Despite these advantages, they have poor solubility characteristics in organic solvents and short emission wavelength as red organic phosphor for hybrid light-emitting diodes (LEDs). In this study, we prepared terrylene bisimide using a coupling reaction and swallow-tail imide group, which has excellent solubility. The structures and properties of swallow-tail terrylene bisimide (9C) were analyzed using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared (FT-IR), UV/Vis spectroscopy, and thermal gravimetric analysis (TGA). The maximum absorption wavelength of (9C) in the UV/Vis spectrum was 647 nm, and the maximum emission wavelength was 676 nm. In the TGA, (9C) demonstrated good thermal stability with less than 5 wt% weight loss up to 415℃. In the solubility test, (9C) has a good solubility of more than 5 wt% in chloroform and dichloromethane. When the compounds (9C) were mixed with PMMA (polymethly methacrylate), the films showed peaks at 680 nm in the PL spectra. The results verify the suitability of (9C) as a red organic phosphor for hybrid LEDs.

Fabrication of Magnesium Alloy Foam Through $TiH_2$ and $CaCO_3$ ($TiH_2$$CaCO_3$를 이용한 마그네슘 합금의 제조)

  • Seo, Chang-Hwan;Seong, Hwan-Goo;Yang, Dong-Hui;Park, Soo-Han;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.26 no.6
    • /
    • pp.267-271
    • /
    • 2006
  • Metal foam is a class of attractive materials, which exhibits unique combinations of physical, mechanical, thermal, electrical and acoustic properties. In particular, it is light and good at absorbing energy, which makes it attractive in automotive and aerospace applications weight is critical. In this paper, the Mg alloy foam was prepared by melt foaming method by addition of calcium as thickening agent, and $TiH_2$ or $CaCO_3$ powder as blowing agent. The macrostructural observation of foamed Mg showed that the pore structures of Mg alloy foam made by $CaCO_3$ as blowing agent were much better than that of foams made by $TiH_2$ as blowing agent. In addition, this paper showed the possible reason of fabrication magnesium alloy foam in proportion to blowing agent and the porosity range was about 40 to 76% as results value.

Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System (비행체 추진기관용 내열 복합재의 특성 및 개발 동향)

  • Hwang, Ki-Young;Park, Jong Kyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.629-641
    • /
    • 2019
  • In order to limit the temperature rise of the structure to a certain level or less while maintaining the aerodynamic shape of solid rocket nozzle by effectively blocking a large amount of heat introduced by the combustion gas of high temperature and high pressure, the heat-resistant materials such as C/C composite having excellent ablation resistance are applied to a position in contact with the combustion gas, and the heat-insulating materials having a low thermal diffusivity are applied to the backside thereof. SiC/SiC composite, which has excellent oxidation resistance, is applied to gas turbine engines and contributes to increase engine performance due to light weight and heat-resistant improvement. Scramjet, flying at hypersonic speed, has been studying the development of C/SiC structures using the endothermic fuel as a coolant because the intake air temperature is very high. In this paper, characteristics, application examples, and development trends of various heat-resistant composites used in solid rocket nozzles, gas turbine engines, and ramjet/scramjet propulsions were discussed.