• Title/Summary/Keyword: Light-weight Structures

Search Result 285, Processing Time 0.022 seconds

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element

  • Lago, Bruno Dal
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.261-273
    • /
    • 2017
  • The control of the deformative behaviour of pre-stressed concrete roof elements for a satisfactory service performance is a main issue of their structural design. Slender light-weight wing-shaped roof elements, typical of the European heritage, are particularly sensitive to this problem. The paper presents the results of deformation measurements during storage and of both torsional-flexural and purely flexural load tests carried out on a full-scale 40.5 m long innovative wing-shaped roof element. An element-based simplified integral procedure that de-couples the evolution of the deflection profile with the progressive shortening of the beam is adopted to catch the experimental visco-elastic behaviour of the element and the predictions are compared with normative close-form solutions. A linear 3D fem model is developed to investigate the torsional-flexural behaviour of the member. A mechanical non-linear beam model is used to predict the purely flexural behaviour of the roof member in the pre- and post-cracking phases and to validate the loss prediction of the adopted procedure. Both experimental and numerical results highlight that the adopted analysis method is viable and sound for an accurate simulation of the service behaviour of precast roof elements.

Effect of Welding Condition and Tool Shape on Defect Formation of Extruded AA6005 with Non-uniform Thickness using Load-Controlled Friction Stir Welding Technique (두께 불균일 AA6005 압출재의 하중제어 마찰교반접합에서 접합 조건과 툴 형상이 결함발생에 미치는 영향)

  • Yoon, Tae-Jin;Kang, Myung-Chang;Jung, Byong-Ho;Kang, Chung-Yun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.45-51
    • /
    • 2013
  • Friction stir welding using aluminum alloys has been widely applied for transportation vehicles because of the light specific weight, which can be used to obtain sound joint and high mechanical properties. This study shows the effects of rotation speed, welding speed, welding load, and tool shape on defect formation with extruded AA6005, which is used for railway vehicle structures of non-uniform thickness welded by friction stir welding using load control systems. Optical microscopy observations and liquid penetrant testing of each FSW joint were carried out in order to observe defect formation. Two kinds of defects, that of probe wear and that of lack of penetration in the bottom of the welded zone, were observed. In the case of using a taper shaped tool, the defect free zone is very narrow, within 100 kgf; however, in case of using a cylindrical shape tool, the defect free zone is wider.

Energy Absorption Characteristics of Side Member for Light-weight Having Various Stacking Condition and Shape of Section (경량화용 사이드부재의 적층구성 및 단면형상 변화에 따른 에너지흡수 특성)

  • Lee, Kil-Sung;Seo, Hyeon-Kyeong;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.671-678
    • /
    • 2007
  • Front-side members of automobile, such as the hat shaped section members, are structures with the greatest energy absorbing capability in a front-end collision of vehicle. This paper was performed to analyze energy absorption characteristics of the hat shaped section members, which are basic shape of side member. The hat shaped section members consisted of the spot welded side member which was utilized to an actual vehicle and CFRP side member for lightweight of vehicle structural member. The members were tested under static axial loading by universal testing machine. Currently, stacking condition related to the collapse characteristics of composite materials is being considered as an issue fer the structural efficiency and safety of automobiles, aerospace vehicles, trains, ships even elevators during collision. So, energy absorption characteristics were analyzed according to stacking condition and shape of section and compared the results of spot welded side member with those of CFRP side member.

Improved Mechanical and Durability Properties of PVC Sheet by Designing Three-Layered Structures

  • Park, Jun-Young;Kim, Woo-Sang;Kang, Hae-Cheon;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho;Lee, Eun-Kyoung;Kim, Namil
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.294-298
    • /
    • 2019
  • A three-layered PVC sheet consisting of polyvinyl chloride (PVC) and woven polyester fabric was prepared by extrusion and calendering. The flexibility and durability of the PVC were tuned by adding plasticizers, additives, and surface coatings. The tensile and tear strengths of the three-layered PVC sheet were higher than those of commercial two-layered sheet, while exhibiting low weight. The concentrations of the total volatile organic compounds (TVOCs) and formaldehyde (HCHO) emitted from the sheet were also lowered. The PVC sheet remained stable after prolonged exposure to UV light, signifying that the PVC sheet is suitable for cargo screen applications.

Dynamic Tensile Characteristics of the High Strength Steel Sheet for an Auto-body (차체용 고장력 강판의 동적 인장 특성 평가)

  • Kim, Seok-Bong;Huh, Hoon;Shin, Chirl-Soo;Kim, Hyo-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.171-176
    • /
    • 2007
  • An important challenging issue in the automotive industry is the light-weight, safe design and enhancement of crash response of an auto-body structures. These objectives lead to increasing adoption of high strength steel sheet for inner and outer auto-body members. This paper evaluates the dynamic tensile characteristics of high strength steel sheets, HS45R, TRIP60, DP60 and DP100, along the rolling direction and transverse direction. Static tensile tests were carried out at the strain rate of 0.003/sec using the static tensile machine (Instron 5583). Dynamic tensile tests were carried out at the range of strain rate from 0.1/sec to 200/sec using a high speed material testing machine developed. The tensile tests acquire stress-strain relation and strain rate sensitivity of each material. The experimental results show two important aspects for high strength steels: the flow stress increases as strain rate increases; the strain hardening decreases as the tensile stress increases. The experiments also produce interesting results that the elongation does not decrease even when the strain rate increases.

Forming process design for the twist reduction of an automotive front side member (프론트 사이드 멤버의 비틀림 저감을 위한 성형공정 설계)

  • Yin, Jeong-Je
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.105-112
    • /
    • 2011
  • Increasing needs for light weight and high safety in modern automobiles induced the wide application of high strength steels in automotive body structures- The main difficulty in the forming of sheet metal parts with high strength steel is the large amount of springback including sidewall curl and twist in channel shaped member parts- Among these shape defects, twist occurs frequently and requires numerous reworks on the dies to compensate the shape deviation- But until now, it seems to be no effective method to reduce the twist in the forming processes- In this study, a new forming process to reduce the twist deformation during the forming of automotive structural member was suggested- This method consists of forming and restriking of embosses on the sidewall around the stretch flanging area of the part- and was applied in the forming process design of an automotive front side inner member with high strength steel- To evaluate the effectiveness of the method, springback analysis using $Pamstampa^{tm}$ was done- Through the analysis results, the suggested method was proven to be effective in twist reduction of channel shaped parts with stretch flanging area.

Effect of Different Brine Injection Levels on the Drying Characteristics and Physicochemical Properties of Beef Jerky

  • Kim, Dong Hyun;Shin, Dong-Min;Lee, Jung Hoon;Kim, Yea Ji;Han, Sung Gu
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.98-110
    • /
    • 2022
  • Meat jerky is a type of meat snack with a long shelf life, light weight, and unique sensory properties. However, meat jerky requires a long manufacturing time, resulting in high energy consumption. In this study, beef jerky was prepared by injecting different concentrations of brine at different hot-air drying times (0-800 min). When the brine injection levels were increased to 30%, the drying characteristics of beef jerky, such as drying time and effective moisture diffusivity, were significantly improved owing to the relatively high water content and the formation of porous structures. The physicochemical properties (e.g. meat color, porosity, shear force, and volatile basic nitrogen) of the beef jerky injected with 30% brine were improved owing to the shortened drying time. Scanning electron microscopy images showed that the beef jerky structure became porous and irregular during the brine injection process. Our novel processing technique for manufacturing beef jerky leads to improved quality characteristics and shortened drying times.

Flexural Behavior of Laminated Wood Beams Strengthened with Novel Hybrid Composite Systems: An Experimental Study

  • Mehmet Faruk OZDEMIR;Muslum Murat MARAS;Hasan Basri YURTSEVEN
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.526-541
    • /
    • 2023
  • Wooden structures are widely used, particularly in earthquake zones, owing to their light weight, ease of application, and resistance to the external environment. In this study, we aimed to improve the mechanical properties of laminated timber beams using novel hybrid systems [carbon-fiber-reinforced polymer (CFRP) and wire rope]. Within the scope of this study, it is expected that using wood, which is an environmentally friendly and sustainable building element, will be more economical and safe than the reinforced concrete and steel elements currently used to pass through wide openings. The structural behavior of the hybrid-reinforced laminated timber beams was determined under the loading system. The experimental findings showed that the highest increase in the values of laminated beams reinforced with steel ropes was obtained with the 2N reinforcement, with a maximum load of 38 kN and a displacement of 137 mm. Thus, a load increase of 168% and displacement increase of 275% compared with the reference sample were obtained. Compared with the reference sample, a load increase of 92% and a displacement increase of 14% were obtained. Carbon fabrics placed between the layers with fiber-reinforced polymer (FRP) prevented crack development and provided significant interlayer connections. Consequently, the fabrics placed between the laminated wooden beams with the innovative reinforcement system will not disrupt the aesthetics or reduce the effect of earthquake forces, and significant reductions can be achieved in these sections.

Experimental study on hollow GFRP-confined reinforced concrete columns under eccentric loading

  • B.L. Chen;H.Y. Gao;L.G. Wang
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.451-460
    • /
    • 2024
  • Hollow reinforced concrete columns confined with GFRP tubes (GRCH) are composite members composed of the outer GFRP tube, the PVC or other plastic tube as the inner tube, and the reinforced concrete between two tubes. Because of their high ductility, light weight, corrosion resistance and convenient construction, many researchers pay attention to the composite members. However, there are few studies on GRCH members under eccentric compression compared with those under axial compression. Eight hollow columns were tested under eccentric compression, including one axial compression column and seven eccentric compression columns. The failure modes and force mechanisms of GRCH members were analyzed, considering the varying in hollow ratio, reinforcement ratio and eccentricity. The test results showed that configuring steel bars can greatly increase the bearing capacity and ductility of the members. Each component (GFRP tube, concrete, steel bar) had good deformation coordination and the strength of each material could be fully utilized. But for specimens with larger eccentricity ratio (er=0.4) and larger hollow ratio (χ=0.55), the restraining effect of GFRP tube on concrete was significantly decreased.