• 제목/요약/키워드: Light-weight Structure

검색결과 498건 처리시간 0.032초

트렌치 굴착에 있어서 경량 흙막이 구조체의 안정성 해석 (Stability Analysis of the Light Weight Earth-Retaining Structure in the Trench Excavation)

  • 서성탁;허창환;김희덕;지홍기
    • 한국농공학회논문집
    • /
    • 제46권2호
    • /
    • pp.93-103
    • /
    • 2004
  • In trench excavation, essential factor of earth-retaining temporary work structure should be easy taking to pieces and movement, and dead weight must be less. This paper studies about the light weight material and application as earth-retaining structure to prevent the slope failure of sand soil ground caused by the variation of groundwater level in trench excavation. That is, light weight earth-retaining structural is proposed and a simulation with FEM on application of proposed structural in sandy soil is presented. The results are summarized as follows; (1) The study proposed FRP H-shaped pannel for the light weight member, and also presented estimation method about stability. (2) Mechanical property (bending moment, shear force, axial force, displacement) were changed according to groundwater level, but these values had been within enough safety rate and allowable stress. Therefore, proposed light weight pannel with FRP is available for bracing structure in trench excavation.

특수차량용 엑슬의 경량화를 위한 구조해석과 소재 개선에 관한 연구 (A study on structure analysis and material improvement lightweight of special-purpose vehicles axle)

  • 이정화;권희준;강정호
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.136-142
    • /
    • 2009
  • The vehicle's light-weight technology is divided into optimization of structure geometric and material. Structure geometric optimization and improvement of materials has examined to be power-train and maintenance on the severe condition. The core technology of Special vehicle's light-weight is constitute by Drop box, Axle and Final reduction gear. Technology and product of the parts is high to overseas and import dependency. We will want to examine the possibility of light-weight for the Axle Case and Drop box-connections. In this research, conventional design of excess weight will inhibit the mobility and fuel efficiency. Through the improvement of Axle material, we saw the possibility reducing weight. If you use the results of these studies, it will be available to domestic production technology and reducing weight of RV car, Dump truck, Track crain, etc.

  • PDF

경량 컴포넌트 구조의 XPDL 기반 워크플로 관리 시스템 개발 (Development of an XPDL-Based Workflow Management System Using the Light-Weight Component Structure)

  • 한관희;김강용
    • 산업공학
    • /
    • 제17권2호
    • /
    • pp.190-199
    • /
    • 2004
  • Recently, many enterprises are introducing a workflow management system for the successful implementation of BPR(Business Process Reengineering). Proposed in this study is the workflow management system which has a light-weight component structure and an XPDL(XML Process Definition Language) file interpretation facility. The XPDL is the standard process definition exchange format developed by WfMC(Workflow Management Coalition). The major causes of inefficiency at current implementations of workflow management systems are the centralized workflow engine structure and the use of proprietary workflow definition format among most solutions. The proposed light-weight component structure in this study is the intermediate structure that takes the strength of both centralized and distributed workflow engines. And a prototype workflow system which uses an XPDL process definition file as input is developed through the thorough analysis of functional requirements.

차량 경량화를 위한 이종소재 접합 연구 (Heat Generation and Machining Accuracy According to Material for Ultra-Precision Machining)

  • 이경일;김재열;이동기
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.130-135
    • /
    • 2018
  • Currently the automobile market is developing eco-friendly vehicles in order to cope with fuel efficiency regulations. Many studies have been conducted to improve travel performance and fuel economy of the environment-friendly vehicles, and vehicle manufacturers study how to manufacture light-weight vehicles for improving fuel economy for both existing vehicles and environment-friendly vehicles. Exemplary light-weight vehicle technologies include optimal design of vehicle body structure which is a light-weight vehicle method by changing component shapes or layout to optimize the vehicle body structure and the new process technology for using new light-weight and very strong materials Various studies.

Study on seismic performance of shaking table model of full light-weight concrete utility tunnel

  • Yanmin Yang;Qi Yuan;Yongqing Li;Jingyu Li;Yuan Gao;Yuzhe Zou
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.15-26
    • /
    • 2023
  • In order to study the anti-seismic performance of full light-weight concrete utility tunnel, EL Centro seismic waves were input, and the seismic simulation shaking table test was carried out on the four utility tunnel models. The dynamic characteristics and acceleration response of the system consisting of the utility tunnel structure and the soil, and the interlayer displacement response of the structure were analyzed. The influence law of different construction methods, haunch heights and concrete types on the dynamic response of the utility tunnel structure was studied. And the experimental results were compared with the finite element calculation results. The results indicated that with the increase of seismic wave intensity, the natural frequency of the utility tunnel structure system decreased and the damping ratio increased. The assembling composite construction method could be equivalent to replace the integral cast-in-place construction method. The haunch height of the assembling composite full light-weight concrete utility tunnel was increased from 30 mm to 50 mm to enhance the anti-seismic performance during large earthquakes. The anti-seismic performance of the full light-weight concrete utility tunnel was better than that of the ordinary concrete utility tunnel. The peak acceleration of the structure was reduced by 21.8% and the interlayer displacement was reduced by 45.8% by using full light-weight concrete. The finite element simulation results were in good agreement with the experimental results, which could provide reference for practical engineering design and application.

경량식 상부구조를 가지는 도시한옥에 관한 연구 - 대구 중구를 중심으로 - (A Study on the Light-weight Roof Structure of Urban Hanok - Focused on the Cases in Jung-gu, Daegu -)

  • 박준현;조재모
    • 건축역사연구
    • /
    • 제22권6호
    • /
    • pp.23-34
    • /
    • 2013
  • The purpose of this study is to look into the weight-lightening phenomenon of the roof structure of some Hanok(韓屋), the Korean traditional houses found from the survey on the distribution and actual state of urban traditional houses existing in the whole region of Jung-gu, Daegu, Korea. As a result of judging from the pre-test of building registers for the research area, approximately 5,000 wood structure houses were found. A field data survey based on these findings showed that there are 1,752 Hanok houses. And the further classification of the Korean traditional houses by roof structure type shows that about 35% of them underwent weight lightening. While this kind of light-weight Hanok is different from the concept of traditional Hanok, they also show the survival method of Hanok that reflects the economical and technological phases of that period. It is expected that deeper understanding on the urban traditional houses will be possible through carrying out in-depth researches on techniques of the light-weight roof structure of the urban traditional houses that are supposed to have functioned as dwellings as commercial products.

인간동력항공기 구조 개발 (Structural Development for Human Powered Aircraft)

  • 신정우;우대현;박일경;이무형;임주섭;박상욱;김성준;안석민
    • 한국항공운항학회지
    • /
    • 제21권1호
    • /
    • pp.62-67
    • /
    • 2013
  • Human Powered Aircraft (HPA) should be light in weight and have high efficiency because power source of propulsion is human muscles. Airframe structure takes up most of empty weight of aircraft, so weight reduction of structure is very important issue for HPA. In this paper, design/analysis/test procedures for ultra light weight structure of the HPA developed by Korea Aerospace Research Institute (KARI) are explained briefly. Structural design is conducted through case studies on HPA in the USA and Japan. Loads analysis is performed to calculate design loads which is needed for structural design and analysis. Structural analysis is conducted for structure sizing. Static strength test of main wing spar which is primary structure of wing is performed to verify structural integrity.

이종소재 접합을 이용한 차량 F-Apron 최적설계에 관한 연구 (Study on Optimal Design of F-Apron of Vehicles by Multi-material Bonding)

  • 정윤수;이경일;김재열
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.102-107
    • /
    • 2019
  • The vehicle market has developed environment-friendly vehicles to comply with fuel economy regulations and exhaust regulations that have become stricter and stricter over time. Many studies have been conducted to improve the travel performance and fuel economy of environment-friendly vehicles, and vehicle manufacturers have been studying how to manufacture light-weight vehicles in order to improve the fuel economy of both existing vehicles and the newer environment-friendly vehicles. Exemplary light-weight vehicle technologies optimizes the design of the vehicle body structure, which is a vehicle weight-reducing method that modifies component shapes or layouts to optimize the structure of the vehicle. In addition, the new process technology uses new light-weight and very strong materials, and not typical materials, to manufacture light-weight vehicles. This study aims at the optimal design of vehicle body structures using multi-materials for the Fender-Apron, which is an important frame member for the external front side of a vehicle body, by conducting FEA (Finite Element Analysis) and multi-material bonding.

고고도 장기체공무인기 경량 주익 스파 설계 (Light Wing Spar Design for High Altitude Long Endurance UAV)

  • 신정우;박상욱;이무형;김태욱
    • 한국항공운항학회지
    • /
    • 제22권2호
    • /
    • pp.27-33
    • /
    • 2014
  • There are several methods to improve the flight efficiency of HALE(High Altitude Long Endurance) UAV(Unmaned Aerial Vehicle). Airframe structural point of view, weight reduction of the airframe structure is the most important method to improve the flight efficiency. In order to reduce the weight of airframe structures, new concepts which are different from traditional airframe structure design such as the mylar wing skin should be introduced. The spar is the most important component in a mylar skin wing structure, so the spar weight reduction is the key point for reduction of the wing structural weight. In this study, design trade-off study for the front spar of the HALE UAV wing is conducted in order to reduce the weight. Design and analysis procedure of high aspect ratio wing spar are introduced. Several front spar structures are designed and trade-off study regarding the weight and strength for the each spar are performed. Spar design configurations are verified by the static strength test. Finally, optimal front spar design is decided and applied to the HALE UAV wing design.

초소형 쿼드로터 개발을 위한 기체형상 설계변경 (Design Modification of Airframe Shape for Ultra Light Quad-Rotor Development)

  • 박대진;이상철;박생진;송태훈
    • 한국항공운항학회지
    • /
    • 제25권4호
    • /
    • pp.44-51
    • /
    • 2017
  • An ultra light quad-rotor is utilized in various areas for military and commercial purpose. Especially, the airframe shape is designed with various airframe size, weight and purpose. In this paper, the initial airframe shape of the quad-rotor was designed and manufactured. Flight test was conducted for the quad-rotor. The design modification of airframe shape was conducted to meet design requirement. By changing design, weight of airframe structure was reduced and payloads were placed to the best position. By reinforcing ribs and reducing vehicle's legs, the durability of airframe structure was enhanced.