• 제목/요약/키워드: Light-guiding Plate

검색결과 29건 처리시간 0.022초

광생물 반응기를 위한 도광판 설계 및 제작 (Design and Fabrication of Light Guiding Plate for Photobioreactor)

  • 박기찬;김훈;신성선;신현길;김종태;정상화;박종락
    • 한국광학회지
    • /
    • 제23권2호
    • /
    • pp.55-63
    • /
    • 2012
  • 본 논문에서는 광생물 반응기의 조명 시스템으로 활용될 LED(Light-Emitting Diode)용 도광판의 광학설계 및 제작 결과에 대해 보고한다. 도광판 설계를 위해 광원, 반사필름, 도광판 패턴에 대한 모델링을 수행하였다. 특히, 도광판 패턴의 경우 램버시안 산란체(Lambertian Scatterer)로 모델링을 수행하였는데, 테스트용으로 제작된 도광판의 조도분포와 부합하는 모델 파라미터(반사율, 산란체의 폭)를 매칭 시뮬레이션을 통하여 추출하였다. 추출된 모델 파라미터를 사용하여 광학설계를 수행하였으며, CNC(Computer Numerical Control) 가공을 통해 도광판을 제작하였고, 평균조도와 조도균일도 등의 광학 특성을 측정하였다.

LED와 태양광 하이브리드 광원을 이용한 광생물 반응기용 도광판 설계 및 제작 (Design and Fabrication of a Light-Guiding Plate for a Photobioreactor Utilizing a Hybrid LED Plus Sunlight Source)

  • 임현철;양승진;백준혁;김재영;장경민;김종태;정상화;박종락
    • 한국광학회지
    • /
    • 제27권2호
    • /
    • pp.73-80
    • /
    • 2016
  • 본 논문에서는 광생물 반응기의 조명 시스템에 적용할 수 있는 LED(Light-Emitting Diode)와 태양광 하이브리드 광원을 이용한 도광판의 설계 및 제작 결과에 대해 보고한다. LED용 도광판 패턴을 설계하고 기존에 보고된 태양광용 도광판에 함께 중첩하여 가공하였다. 하이브리드 도광판의 출력 PFD(Photon Flux Density)를 일정하게 유지시켜주기 위한 제어 시스템을 제작하였으며, 출력 PFD 목표값을 $70{\mu}E/(m^2{\cdot}s)$로 설정하였을 경우 오차범위 ${\pm}2%$ 이내에서 제어가 이루어짐을 확인하였다.

LIGA-reflow 응용 Micro-lens Pattern 도광판 금형 제작 (Micro-lens Patterned LGP Injection Mold Fabrication by LIGA-reflow Process)

  • 황철진;김종덕;정재완;하수용;이규현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2004
  • Microlens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LCP optical design, microlens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. In order to achieve flow balance during the micro-injection molding process and dimensional accuracy, two LGP pattern was made in one micro-mold.

  • PDF

$50{\mu}m$ Microlens 패턴 금형의 미세사출성형 전사성과 전광특성 기초연구 (A Basic Study of replication and brightness for micro injection molding with ${\sim}50{\mu}m$ micro-lens pattern mold)

  • 황철진;고영배;허영무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.280-283
    • /
    • 2004
  • Micro-lens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LGP optical design, micro-lens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. During injection molding process, experimental study was conducted to improve replication quality and brightness of ${\sim}50um$ micro-lens pattern mold. The effect of mold temperature for the replication quality of micro-lens array was studied.

  • PDF

소형 LCD 도광판의 사출성형에 관한 연구 (2) : 공정조건이 휘도에 미치는 영향 (A Study on the Injection Molding for the Light Guide Plate of a Small Sized LCD (2) : Influences of Processing Conditions on the Brightness)

  • 이호상
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.341-348
    • /
    • 2002
  • For the light guide plate of the TFT-LCD, there have been increasing demands for higher brightness, thin and light-weight design, and lower power consumption. To meet these demands, a micro-prism-type frontlight that integrates a prismatic sheet and a light-guiding plate has been developed. In this paper, the influences of processing conditions on the brightness were studied lot the injection molding of the light guide plate. Based on the experiment with an actual mold, the design of experiments and the neural network theory were used lot choosing the optimal processing parameters to increase the brightness and the uniformity. The verification experiment also showed that the brightness and the uniformity were increased dramatically with the chosen processing conditions.

가공방법에 따른 소형 도광판용 광학패턴 금형의 표면특성연구 (Surface characteristics on the optical pattern die of light guiding plate by machining types)

  • 도영수;김종선;고영배;김종덕;윤경환;황철진
    • Design & Manufacturing
    • /
    • 제2권4호
    • /
    • pp.1-4
    • /
    • 2008
  • Micro pattern is applied to the light guiding plate(LGP) to enhance the uniformity of the brightness of the LCD. The micro cones are molded in intaglio on the surface of the LGP. The surface roughness of each cone was 40nm and 38nm in negative and positive die for laser ablation. In chemical etching, the surface roughness was 25nm, 24nm in negative and positive. And the surface roughness of negative and positive dies were 4nm and 5nm for LIGA-reflow process.

  • PDF

휴대폰용 2인치 LCD-BLU의 광특성에 미치는 음각 및 양각 광학 패턴의 영향 연구 : II. 금형 및 광특성 (A Study on the Effect of Optical Characteristic in 2 inch LCD-BLU by Negative and Positive Optical Pattern : II. Mold and Light Characteristics)

  • 황철진;고영배;김종선;민인기;유재원;윤경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.339-340
    • /
    • 2006
  • Recently, many researches have been done to improve optical performance of LCD-BLU(Back Light Unit). One of the most important parts in LCD-BLU is LGP(Light Guiding Plate). Micro-patterned LGP is known to have different optical characteristics depending on their shape, pattern density and size, etc. In the present study, a micro-optical patterned LGP mold was fabricated using LiGA process. The difference in the optical characteristics between positive and negative patterned LGP's was investigated by fixing the density, location and size of each pattern. It was found that the negative patterned LGP showed better optical characteristics than positive one.

  • PDF

사출성형 특성을 고려한 2인치 휴대폰용 도광판 금형제작에 관한 연구 (Effects on the process factors of blow molding affects to the PET bottle)

  • 황철진;도영수;김종선;민인기;김종덕;윤경환
    • Design & Manufacturing
    • /
    • 제2권6호
    • /
    • pp.1-6
    • /
    • 2008
  • Recently, many researches have been done to improve optical performance of LCD-BLU(Back Light Unit). One of the most important parts in LCD-BLU is LGP(Light Guiding Plate). Micro-patterned LGP is known to have different optical characteristics depending on their shape, pattern density and size, etc. In the present study, a micro-optical patterned LGP mold was fabricated using LiGA process. The difference in the optical characteristics between positive and negative patterned LGP's was investigated by fixing the density, location and size of each pattern. It was found that the negative patterned LGP showed better optical characteristics than positive one.

  • PDF

도광판 금형의 제작 방법에 따른 사출금형 및 성형품의 표면특성에 관한 연구 (A Study on the Surface Characteristics of Injection Mold and Injection Molded Part depending on LGP-Mold Fabrication Methods)

  • 도영수;김종선;고영배;김종덕;윤경환;황철진
    • 소성∙가공
    • /
    • 제16권8호
    • /
    • pp.596-602
    • /
    • 2007
  • LGP (Light Guiding Plate) of LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of the major components that affect the product quality of LCD. The optical patterns of LGP(2.2") molds are fabricated by three different methods, namely, (1) laser ablation, (2) chemical etching and (3) LiGA-reflow, respectively. The characteristics of surface patterns and roughnesses of molds and injection molded parts were compared to evaluate the optical characteristics. The optical patterns of injection molded LGP with mold fabricated by LiGA - reflow method showed the best geometric structure. The surface roughness (Ra) of LGP#s with molds fabricated by (1) laser ablation: $Ra={\sim}31nm$, (2) chemical etching: $Ra={\sim}22nm$, and (3) LiGA-reflow: $Ra={\sim}4nm$.

박형 도광판의 음각, 양각 마이크로 패턴 성형성에 관한 연구 (Study on the gate cutting of light guiding plate for mobile using quenching element)

  • 황철진;김종선;민인기;김종덕;윤경환
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.1-4
    • /
    • 2008
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LCP (Light Guide Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50-200{\mu}m$ in diameter on it by erosion method. But the surface of the erosion dots of LGP is very rough due to the characteristics of the erosion process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. Especially, the negative and positive micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP.

  • PDF