• 제목/요약/키워드: Light-extraction optical film

검색결과 10건 처리시간 0.021초

Fabrication and Optical Properties of 2D Photonic Crystal Assisted Thin Film Phosphors

  • Oh, Jeong-Rok;Ko, Ki-Young;Do, Young-Rag
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.594-597
    • /
    • 2008
  • This presentation introduces a simple strategy for producing 2D photonic crystal layers (PCL) with different structures. In an attempt to improve extraction efficiency from the thin film phosphors (TFPs), this study have examined the effects of the structural variables of the 2D PCLs on the light extraction efficiency of TFPs.

  • PDF

OLED의 광 효율 향상 기술: 랜덤 나노 외부 광 추출 복합 층 제작 (Light Efficiency Enhancement Technology of OLED: Fabrication of Random Nano External Light Extraction Composite Layer)

  • 최근수;장은비;서가은;박영욱
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.39-44
    • /
    • 2022
  • The light extraction technology for improving the light efficiency of OLEDs is the core technology for extracting the light inside the OLEDs to the outside. This study demonstrates a simple method to generate random nanostructures (RNSs) containing high refractive index nanoparticles to improve light extraction and viewing angle characteristics. A simple dry low-temperature process makes the nanostructured scattering layer on the polymer resin widely used in the industry. The scattering layer has the shape of randomly distributed nanorods. To control optical properties, we focused on changing the shape and density of RNSs and adjusting the concentration of high refractive index nanoparticles. As a result, the film of the present invention exhibits a perpendicular transmittance of 85% at a wavelength of 550 nm. This film was used as a scattering layer to reduce substrate mode loss and improve EL efficiency in OLEDs.

CsCl 보호막을 이용한 전면발광 OLED의 전기 및 광학적 특성 (Electrical and Optical Properties of Top Emission OLEDs with CsCl Passivation Layer)

  • 김소연;문대규;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제21권2호
    • /
    • pp.173-177
    • /
    • 2008
  • We have developed the transparent passivation layer for top emission organic light emitting diodes using CsCl thin film by the thermal evaporation method. The CsCl film was deposited on the Ca/Ag semitransparent cathode. The optical transmittance of Ca/ Ag/CsCl triple layer is higher than that of Ca/Ag double layer in the visible range. The device with a structure of glass/Ni/2-TNATA/a-NPD/Alq3:C545T/BCP/Alq3/Ca/Ag/CsCl results in higher efficiency than the device without CsCl passivation layer. The device without CsCl thin film shows a current efficiency of 7 cd/A, whereas the device passivated with CsCl layer shows an efficiency of 10 cd/A. This increase of efficiency isresulted from the increased optical extraction by the CsCl passivation layer.

Fabrication of Viewing Angle Direction Brightness-Enhancement Optical Films using Surface Textured Silicon Wafers

  • Jang, Wongun;Shim, Hamong;Lee, Dong-Kil;Park, Youngsik;Shin, Seong-Seon;Park, Jong-Rak;Lee, Ki Ho;Kim, Insun
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.569-573
    • /
    • 2014
  • We demonstrate a low-cost, superbly efficient way of etching for the nano-, and micro-sized pyramid patterns on (100)-oriented Si wafer surfaces for use as a patterned master. We show a way of producing functional optical films for the viewing angle direction brightness-enhancement of Lambertian LED (light emitting diode)/OLED (organic light emitting diode) planar lighting applications. An optimally formulated KOH (Potassium hydroxide) wet etching process enabled random-positioned, and random size-distributed (within a certain size range) pyramid patterns to be developed over the entire (100) silicon wafer substrates up to 8" and a simple replication process of master patterns onto the PC (poly-carbonate) and PMMA (poly-methyl methacrylate) films were performed. Haze ratio values were measured for several film samples exhibiting excellent values over 90% suitable for LED/OLED lighting purposes. Brightness was also improved by 13~14% toward the viewing angle direction. Computational simulations using LightTools$^{TM}$ were also carried out and turned out to be in strong agreement with experimental data. Finally, we could check the feasibility of fabricating low-cost, large area, high performance optical films for commercialization.

유기발광다이오드의 외부 광추출층을 위한 롤투롤 마이크로컨택 방식으로 인쇄된 마이크로렌즈 어레이 (Roll-to-roll microcontact-printed microlens array for light extraction film of organic light-emitting diodes)

  • 화수빈;성백상;이재현;이종희;김민회
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.205-210
    • /
    • 2022
  • 본 연구에서는 유기 발광 다이오드(OLED)의 광추출 향상을 위한 롤투롤 마이크로컨택(mCP)방식으로 인쇄된 마이크로렌즈 어레이(MLA)를 제시하였다. 상업적으로 사용되는 마이크로렌즈 어레이를 템플레이트로 사용하여서 polydimethylpolysiloxane(PDMS)를 롤스탬프로 제작하였다. 낮은 끓는 점을 가지는 불소화 잉크로부터 PDMS 롤스탬프에 고분자 박막을 형성하고 이를 OLED의 하부면에 고압·고온 처리 없이 인쇄하였다. 최적화된 농도를 찾아서 템플레이트로 사용된 MLA와 거의 동일한 모양의 패턴을 성공적으로 인쇄하였다. 마이크로컨택 방식으로 인쇄된 MLA의 구조와 소재의 낮은 흡수도로 인해서 OLED의 외부양자효율이 18% 향상되었다.

PSS 상 버퍼층 종류에 따른 GaN 박막 성장 특성 비교 (GaN Film Growth Characteristics Comparison in according to the Type of Buffer Layers on PSS)

  • 이창민;강병훈;김대식;변동진
    • 한국재료학회지
    • /
    • 제24권12호
    • /
    • pp.645-651
    • /
    • 2014
  • GaN is most commonly used to make LED elements. But, due to differences of the thermal expansion coefficient and lattice mismatch with sapphire, dislocations have occurred at about $109{\sim}1010/cm^2$. Generally, a low temperature GaN buffer layer is used between the GaN layer and the sapphire substrate in order to reduce the dislocation density and improve the characteristics of the thin film, and thus to increase the efficiency of the LED. Further, patterned sapphire substrate (PSS) are applied to improve the light extraction efficiency. In this experiment, using an AlN buffer layer on PSS in place of the GaN buffer layer that is used mainly to improve the properties of the GaN film, light extraction efficiency and overall properties of the thin film are improved at the same time. The AlN buffer layer was deposited by using a sputter and the AlN buffer layer thickness was determined to be 25 nm through XRD analysis after growing the GaN film at $1070^{\circ}C$ on the AlN buffer CPSS (C-plane Patterned Sapphire Substrate, AlN buffer 25 nm, 100 nm, 200 nm, 300 nm). The GaN film layer formed by applying a 2 step epitaxial lateral overgrowth (ELOG) process, and by changing temperatures ($1020{\sim}1070^{\circ}C$) and pressures (85~300 Torr). To confirm the surface morphology, we used SEM, AFM, and optical microscopy. To analyze the properties (dislocation density and crystallinity) of a thin film, we used HR-XRD and Cathodoluminescence.

Thickness Measurement of a Transparent Thin Film Using Phase Change in White-Light Phase-Shift Interferometry

  • Kim, Jaeho;Kim, Kwangrak;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.505-513
    • /
    • 2017
  • Measuring the thickness of thin films is strongly required in the display industry. In recent years, as the size of a pattern has become smaller, the substrate has become larger. Consequently, measuring the thickness of the thin film over a wide area with low spatial sampling size has become a key technique of manufacturing-yield management. Interferometry is a well-known metrology technique that offers low spatial sampling size and the ability to measure a wide area; however, there are some limitations in measuring the thickness of the thin film. This paper proposes a method to calculate the thickness of the thin film in the following two steps: first, pre-estimation of the thickness with the phase at the peak position of the interferogram at the bottom surface of the thin film, using white-light phase-shift interferometry; second, accurate correction of the measurement by fitting the interferogram with the theoretical pattern through the estimated thickness. Feasibility and accuracy of the method has been verified by comparing measured values of photoresist pattern samples, manufactured with the halftone display process, to those measured by AFM. As a result, an area of $880{\times}640$ pixels could be measured in 3 seconds, with a measurement error of less than 12%.

OLED Light Enhancement with Nanostructured Films

  • Lamansky, Sergey;Le, Ha;Hao, Encai;Stegall, David;Wang, Ding;Lu, Yi;Zhang, Jun-Ying;Smith, Terry L.;Gardiner, Mark;Kreilich, Leslie;Anim-Addo, Jonathan;McCormick, Fred B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.282-285
    • /
    • 2009
  • Nanostructured OLED light extraction films have been made via roll-to-roll coating processes. Their on-axis and integrated outcoupling efficiencies reach 2X and 1.3-1.8X, respectively. Optical performance and effects of the nanostructured film on pixel blur and image ghosting will be discussed.

  • PDF

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • 제2권1호
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

LCD 백라이트 유닛의 서브 마이크론 회절 격자 도광판의 광 출사 특성 연구 (Feasibility Study of the Light-outcoupling Characteristics of a Diffraction-grating-imprinted Light-guide Plate for an LCD Backlight Unit)

  • 최환영
    • 한국광학회지
    • /
    • 제31권4호
    • /
    • pp.176-182
    • /
    • 2020
  • 서브-미크론 주기의 미세한 회절 격자가 새겨진 도광판을 이용하여 빛을 수직으로 출사시켜 기존 방식에서 사용하는 집광용 프리즘 필름을 대체할 수 있는 가능성에 대하여 연구하였다. 시뮬레이션과 실험을 통해 최적 회절 격자 주기를 결정하였고, 입사되는 빛의 고도각과 방위각에 따라 회절 격자의 투과 모드 효율을 계산하였다. 또한, 회절에 의해 더 많은 빛을 추출할 수 있도록 도광판의 모양과 구성을 제안하여 고도각과 방향각을 최적화하는 두 가지 방식의 효과를 시뮬레이션으로 비교하였다. 광선 추적프로그램을 활용하여 회절 격자 각인 도광판의 휘도 각 분포를 계산하여 실제로 제작된 시제품의 위치별 휘도 각 분포와 비교하였다.