• Title/Summary/Keyword: Light-duty diesel

Search Result 93, Processing Time 0.022 seconds

Control Measures for Air Pollutant Emissions from In-Use Light-Duty Diesel Vehicles Regarding their Emission Control Technologies (배출허용기준 대응기술을 고려한 국내 소형 경유 운행차의 대기오염물질 관리 방안)

  • Lee, Taewoo;Park, Hana;Park, Junhong;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.327-338
    • /
    • 2014
  • The objective of this study is to enhance the effectiveness of Korean Inspection and Maintenance (I/M) program. Three main tasks are: to measure pollutant emissions of in-use light-duty diesel vehicles (LDVs); to evaluate the validity of existing smoke control scheme for low-smoke-emitting vehicles, which have diesel particulate filters, DPF, to meet stringent Euro-5 emission limits; and to assess the necessity and the benefit of $NO_x$ inspection, which is not involved in current I/M program. We measured second-by-second smoke, particulate and gaseous emissions of 27 LDVs using opacity smoke meter, photo-acoustic soot sensor, and portable emissions measurement system, respectively, under the Korean I/M test driving cycle, KD-147. We find that the DPF plays a key role in controlling soot, which can be considered as black carbon contained in particulate matter. Thus, from an I/M perspective, we believe smoke inspection strategies for Euro-5 diesel vehicles should be more focused on the capability of detecting DPF malfunctions or failures, in order to keep DPF properly functional. Fleet averaged distance-specific $NO_x$ emissions are consistently higher than corresponding emission limits, and the values are similar among pre-Euro-3, Euro-3, and Euro-4 vehicle fleets. These findings indicate that the $NO_x$ inspection should be incorporated into current I/M program in order to manage urban $NO_x$ emissions. This research allows the Korean I/M program keep pace with developments in vehicle technologies, as well as the increased emphasis on $NO_x$ with respect to air quality and human health.

Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass (과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구)

  • Park, Jung-Soo;Lee, Kyo-Seung;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.

FUTURE GASOLINE AND DIESEL ENGINES - REVIEW

  • Monaghan, M.L.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • This paper reviews the main drivers forcing change and progress in powertrains for passenger cars in the coming years. The environmental drivers of omissions and CO2 will force better technical performance, but customer demand for increased choice will force change in the basic engine design and provide opportunities for alternate configurations of powertrain. Gasoline engines will embody refinements of valve train actuations as well as developments in combustion, especially direct injection and possibly a lean booated form of direct injection. Nevertheless, the conventional, port injected engine will continue to be the dominant engine for some years to come. The high speed direct injection diesel will very soon supplant its indirect injection predecessor completely. It will take an increasing share of the total powertrain market as improved specific power and refinement make it even more attractive to the customer. Car manufacturers will provide diesel models to satisfy this customer demand as well as using the efficiency of the diesel to enable them to meet their fleet CO2 commitments. Both gasoline and diesel engines will see an increasing degree of electrification and partial hybridisation as efficient flywheel mounted electrical devices become available.

  • PDF

A Study on Evaluating a Representative Smoke Value from an Inspection Vehicle Using Integration Method over a Cycle of Free-Acceleration Test Mode (무부하 급가속 측정 사이클로 운전되는 검사 대상 디젤 차량으로부터 배출되는 매연값 적분에 의한 차량 매연 대표값 특성 연구)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.132-139
    • /
    • 2013
  • Smoke emissions from light duty diesel vehicles were measured using light extinction method with the free acceleration test mode. The smoke emissions for each measurement cycle of the free acceleration method showed large variations according to driver's pedal pushing pattern. The smoke values for each measurement cycle initially increased and reach a peak value. Integration of the smoke emissions with time for each measurement cycle was performed to get a representative smoke value which was obtained by averaging the integrated results. Two kinds of integration time range were used. One is range over the whole measurement cycle of the free acceleration method. The other is only the acceleration range in the measurement cycle. Overall, variation of the representative smoke values obtained by the integration method was reduced comparing to the traditional representative smoke value which was obtained from a peak smoke value over the measurement cycle. Ten vehicles of the same model with 2.5 liter diesel engines, and seven vehicles of the same model with 2.7 liter diesel engines, were tested using the free acceleration test method.

An experimental study on noise reduction of light duty idi diesel engine (간접 분사적 소형 diesel engine의 소음저감에 관한 실험적 연구)

  • 오정배;목희수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.2-8
    • /
    • 1988
  • 중대형 상용차에 널리 사용되어온 디젤엔진은 오일 쇼크 이후로 소형 상용차에까지 널리 탑재되고 있는 세계적인 추세이다. 디젤엔진은 높은 연소 압력 및 압력 상승율(Rate of Pressure Rice)로 운전되기 때문에 연소소음(Combustion Noise) 및 기계소음(Mechanical Noise)이 매우 크다. 차량 개발 개념에 있어 소음제어는 법적 규제와 소비자의 요구수준을 만족시키는 측면에서 고려되어야 한다. 차량 전체 소음에서 엔진 소음의 기여도는 약 40-50%정도이며 당연히 엔진소음 저감 대책의 필요성은 높다. 본고에서는 2.4리터 간접 분사식(IDI)디젤 엔진의 소음 저감을 위한 소음 저감 대책을 기술한다.

  • PDF

A Study of Greenhouse Gas Emission Rates from LDTs according to Emission Certification Modes and Real-World Vehicle Driving Cycles in Korea (차량인증모드와 실도로 주행모드별 국내 경유 소형화물 자동차의 온실가스 배출특성 분석)

  • Kim, Ji Young;Seo, Chungyoul;Son, Jihwan;Park, Junhong;Moon, Taeyoung;Lee, Sangeun;Kim, Jeongsoo
    • Journal of Climate Change Research
    • /
    • v.3 no.4
    • /
    • pp.235-243
    • /
    • 2012
  • Mobile sources are one of the most significant contributors to the inventory of greenhouse gas (GHG). The administration in Korea has set a goal of cutting GHG emissions of vehicles by 34.3% compared to Business As Usual (BAU) by 2020. To achieve this goal, GHG emission standards for vehicles have been applied since 2012, and now light-duty trucks are under consideration to be included to the vehicle types that will be regulated in the new version of GHG emission standards. Therefore, this study focuses on analyzing characteristics of exhaust GHGs (CO2, CH4, and N2O) emissions of diesel light-duty trucks according to their various driving modes. GHGs emissions of diesel light-duty trucks reduced in inverse proportion to the speed of the vehicles. GHGs emissions from the combined mode were 8% and 14% lower than those from the CVS- 75 and NEDC modes, respectively.

Characteristics of Exhaust Emissions Reduction by Oxidation Catalyst for Light-duty Diesel Engine (산화촉매에 의한 소형디젤엔진의 배출가스 저감특성)

  • 김선문;임철수;엄명도;정일래
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.411-417
    • /
    • 2002
  • The purpose of this study is to evaluate the emission reduction characteristics depending on the formation of the catalyst which influences the development of the diesel oxidation catalyst (DOC) suitable for small-sized diesel engines. We also attempted to suggest the feasibility of it as an after-treatment device. The reduction efficiency of DOC for CO and HC was proportional to the contents of precious metals, and the particulate matter (PM) has been reduced as much as 53∼59%. The reduction rate of soluble organic fraction (SOF) by DOC attachment revealed 100%. The composition of sulfate in PM increased from 3%, 7∼11% by installation of DOC. It is described that increase of sulfate contributed to the production of PM. This result also showed that the SOF and sulfate have trade-off relationship.

A Study on the Characteristics of NOx and another Emisson by Water Injection System for a Light-Duty Diesel Engine (물 분사 시스템에 의한 소형 디젤엔진의 NOx 및 그 외 배출물의 특성에 관한 연구)

  • Choi Jae-Sung;Nam Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.628-636
    • /
    • 2005
  • In this paper. the effects of a WI(Water Injection) in the intake pipe for a 4-cylinder Dl(Direct Injection) diesel engine are investigated experimentally, The WI system was controlled by the duty cycle from the intake manifold's temperature and MAF(Manifold Air Flow) First. effect of EGR on NOx reduction was investigated. Then WI system was applied to reduce NOx As the results. we can make the NOx map and visualize the NOx results by variation of engine speed and engine load It was known that effect of WI system on NOx reduction without the EGR was better than the with EGR base engine except of low load and speed condition.