• 제목/요약/키워드: Light-Water Reactor

검색결과 230건 처리시간 0.025초

Removal of Bisphenol-A using Rotating Photocatalytic Oxidation Drum Reactor (RPODR)

  • Son, Hee-Jong;Jung, Chul-Woo;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.197-202
    • /
    • 2008
  • This study evaluated the photocatalytic oxidation of BPA using the RPOD reactor under various conditions. This study found that the RPOD was effective for BPA degradation. It could reduce 1 mg/L of BPA by half within 5 min under the optimum conditions. According to the study results, $TiO_2$ coating was important for the BPA oxidation. As the coating thickness increased, the removal efficiency improved. The light source, the light intensity and the drum rotating speed were important for the oxidation. The UV light was more effective for the BPA degradation than the visible light. The removal efficiency improved with increasing intensity. As the drum speed increased, the removal efficiency improved. The maximum speed was 240 rpm in this study. Addition of air and nitrogen was not beneficial for the BPA degradation in this study probably due to enough oxygen in the water.

STATUS OF FACILITIES AND EXPERIENCE FOR IRRADIATION OF LWR AND V/HTR FUEL IN THE HFR PETTEN

  • Bakker Klaas;Klaassen Frodo;Schram Ronald;Futterer Michael
    • Nuclear Engineering and Technology
    • /
    • 제38권5호
    • /
    • pp.417-422
    • /
    • 2006
  • The present paper describes the 45 MW High Flux Reactor (HFR) which is located in Petten, The Netherlands. This paper focuses on selected technical aspects of this reactor and on nuclear fuel irradiation experiments. These fuel experiments are mainly experiments on Light Water Reactor (LWR) and Very/High Temperature Reactor (V/HTR) fuels, but also on Fast Reactor (FR) fuels, transmutation fuels and Material Test Reactor (MTR) fuels.

Evaluation of coolant density history effect in RBMK type fuel modelling

  • Tonkunas, Aurimas;Pabarcius, Raimоndas;Slavickas, Andrius
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2415-2421
    • /
    • 2020
  • The axial heterogeneous void distribution in a fuel channel is a relevant and important issue during nuclear reactor analysis for LWR, especially for boiling water channel-type reactors. Variation of the coolant density in fuel channel has an effect on the neutron spectrum that will in turn have an impact on the values of absolute reactivity, the void reactivity coefficient, and the fuel isotopic compositions during irradiation. This effect is referring to as the history effect in light water reactor calculations. As the void reactivity effect is positive in RBMK type reactors, the underestimation of water density heterogeneity in 3D reactor core numerical calculations could cause an uncertainty during assessment of safe operation of nuclear reactor. Thus, this issue is analysed with different cross-section libraries which were generated with WIMS8 code at different reference water densities. The libraries were applied in single fuel model of the nodal code of QUABOX-CUBBOX/HYCA. The thermohydraulic part of HYCA allowed to simulate axial water distribution along fuel assembly model and to estimate water density history effect for RBMK type fuel.

광학모델을 이용한 자외선 접촉조 최적 설계에 관한 연구 (A Study on Optimal Design of UV Contactor using an Optical Radiation Model)

  • 최영균;김두일;김성홍
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.547-552
    • /
    • 2009
  • Because of refractory property of light, the travel path of UV light becomes longer than the straight line and shorter solely in water as UV light passes sequentially through air, quartz and water. Note that water significantly absorbs UV light. Hence, UV intensity shall be estimated to be lower when refraction is neglected than it is considered. Reflection is also critical for the design of UV radiation system. While the reflection at the interface of air and quartz is low enough to ignore, it is too high to be ignored at the interface of quartz and water. Assuming constant power, smaller length to width ratio of UV reactor is beneficial and single-lamp system is preferred to multi-lamps. Under the given cross section, optimal lamp positions could be decided. For example of an elliptical reactor with dual lamps, the optimal lamp locations shall be the 1/3 and 2/3 position of the longer axis.

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

SIPPING TEST: CHECKING FOR FAILURE OF FUEL ELEMENTS AT THE OPAL REACTOR

  • Smith, Michael Leslie;Bignell, Lindsey Jorden;Alexiev, Dimitri;Mo, Li
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.125-130
    • /
    • 2010
  • Sipping measurements were implemented at the Open Pool Australian Light water reactor (OPAL) to test for failure in reactor fuel elements. Fission product released by the fuel element into the pool water was measured using both High Purity Germanium (HPGe) detection via samples and a NaI(Tl) detection in-situ with the sipping device. Results from two fuel elements are presented.

Superheated Water-Cooled Small Modular Underwater Reactor Concept

  • Shirvan, Koroush;Kazimi, Mujid
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1338-1348
    • /
    • 2016
  • A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at $500^{\circ}C$ to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid

  • Saadati, Hassan;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.639-647
    • /
    • 2018
  • In this study, the effects of selecting water/silver nanofluid as both a coolant and a reactivity controller during the first operating cycle of a light water nuclear reactor are investigated. To achieve this, coupled neutronic-thermo-hydraulic analysis is employed to simulate the reactor core. A detailed VVER1000/446 reactor core is modeled in monte carlo code (MCNP), and the model is verified using the porous media approach. Results show that the maximum required level of silver nanoparticles is 1.3 Vol.% at the beginning of the cycle; this value drops to zero at the end of cycle. Due to substitution of water/boric acid with water/Ag nanofluid, reactor operation time at maximum power extends to 357.3 days, and the energy generation increases by about 27.3%. The higher negative coolant temperature coefficient of reactivity in the presence of nanofluid in comparison with the water/boric acid indicates that the reactor is inherently safer. Considering the safety margins in the presence of the nanofluid, minimum departure from nucleate boiling ratio is calculated to be 2.16 (recommendation is 1.75).

CFD에 의한 Axial Reactor Type 자외선 유수살균장치의 출구 위치에 따른 UV Dose 예측 (UV Dose Predictions for Ultra Violet Flowing Water Purification of Axial Reactor Type based on the location of the exit by CFD)

  • 최종웅;김성수;박노석;이영주;채선하
    • 상하수도학회지
    • /
    • 제26권4호
    • /
    • pp.521-533
    • /
    • 2012
  • Interest in application of ultraviolet light technology for primary disinfection that used for the treatment of water for consumption and wastewater has increased significantly in recent years. Analysis of these systems has been carried out using Computational Fluid Dynamics (CFD) procedure. It offers advantages over other techniques in specific circumstances. CFD has emerged as a powerful tool to aid design of a UV reactor by providing the UV dose delivered by the proposed reactor design and allowing engineers to evaluate alternative designs in much less time and at a reasonable cost. In this study, five different configurations of the apparatus depending on the location of the exit are evaluated in terms of maximum dose, minimum dose, flow patterns, particle tracks and transient dose. The configuration 3 results have higher minimum UV dose value and uniform particle distribution of the UV dose on the outlet than other's.