• Title/Summary/Keyword: Light weight pannel

Search Result 4, Processing Time 0.017 seconds

Stability Analysis of the Light Weight Earth-Retaining Structure in the Trench Excavation (트렌치 굴착에 있어서 경량 흙막이 구조체의 안정성 해석)

  • Seo , Sung-Tag;Heo , Chang-Han;Kim , Hee-Duck;Jee , Hong-Kee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.93-103
    • /
    • 2004
  • In trench excavation, essential factor of earth-retaining temporary work structure should be easy taking to pieces and movement, and dead weight must be less. This paper studies about the light weight material and application as earth-retaining structure to prevent the slope failure of sand soil ground caused by the variation of groundwater level in trench excavation. That is, light weight earth-retaining structural is proposed and a simulation with FEM on application of proposed structural in sandy soil is presented. The results are summarized as follows; (1) The study proposed FRP H-shaped pannel for the light weight member, and also presented estimation method about stability. (2) Mechanical property (bending moment, shear force, axial force, displacement) were changed according to groundwater level, but these values had been within enough safety rate and allowable stress. Therefore, proposed light weight pannel with FRP is available for bracing structure in trench excavation.

Production Processes of Porous Metals and Their Applications (다공질 금속의 제조와 응용)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.155-164
    • /
    • 2015
  • Porous metals are called as a new material of 21th century because they show not only extremely low density, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Since the late in the 1990's, considerable progress has been made in the production technologies of many kinds of porous metals such as aluminum, titanium, nickel, copper, stainless steel, etc. The commercial applications of porous metals have been increased in the field of light weight structures, sound absorption, mechanical damping, bio-materials, thermal management for heat exchanger and heat sink. Especially, the porous metals are promising in automotive applications for light-weighting body sheets and various structural components due to the good relation between weight and stiffness. This paper reviews the recent progress of production techniques using molten metal bubbling, metal foaming, gas expansion, hollow sphere structure, unidirectional solidification, etc, which have been commercialized or under developing, and finally introduces several case studies on the potential applications of porous metals in the area of heat sink, automotive pannel, cathod for Ni-MH battery, golf putter and medical implant.

Stability Analysis Techniques of Bracing Structure in the Hard Clay Ground According to the Variation of the Groundwater Level at the Trench Excavation (경질점성토 지반에서 Trench 굴착시 지하수위 변동에 따른 가설구조체 안정해석 기법)

  • Heo, Chang-Hwan;Seo, Sung-Tag;Kim, Hee-Duck;Jee, Hong-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.99-110
    • /
    • 2003
  • In this study, lightening material weight and normalizing structure of preventing system of landslide soil-rock in trench excavation was tried with focusing in safety construction availability and workability. In other words, risk estimate, safety management method investigation, applicability of bracing material and mechanical stability of bracing structure was studied. From these result, structural stability and structural analysis of light weight bracing structure was carried out with common structural analysis program, for examining movement mechanism of bracing structure and normalization of standard. The result are summarized as following. (1) Mechanical ability of bracing members and soil pressure parameter acting to member for ensuring mechanical propriety of bracing structural and useful of new material considering soil mechanics boundary were proposed. Also theory and method of analysis of bracing structural were proposed. (2) As a result of the structure analysis of geographical profile for light pannel used FRP as hard clay mechanical characteristics(bending moment, shear force, axial force) of panel were changed according to groundwater level and it is proved that the result of mechanical analysis is within allowable stress. Thus, light pannel is available for bracing structure in trench excavation.

A Study on the Preparation and Mechanical Properties of Hybrid Composites Reinforced Waste FRP and Urethane Foam (폐 FRP/Urethane Foam 충진 혼성복합재의 제조 및 기계적 물성에 관한 연구)

  • 황택성;신경섭;박진원
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.564-570
    • /
    • 2000
  • The waste FRP occured in the fabrication of SMC (sheet molding compound) bathtubs and the waste polyurethane foam occured in electronic manufacture and waste insulator were applied as a soundproof and light weight pannel in the waste FRP unsaturated polyester matrix resin composites to recycle. The effect of filler contents on the mechanical properties and interfacial phenomena of the filler and matrix on the composites was evaluated. The tensile strength of composites reached its maximum value of 82.34 MPa when the filler content was 70 wt%, and the more content of reinforcement is increased, the more tensile modulus was decreased. The flexural strength and modulus of composites, reinforced 70 wt% with filler content, were dominant compared to the other samples to 72.5 MPa, 958.4 MPa respectively. When composite of reinforced 70 wt% with filler content, it was confirmed that pull out phenomena and cracks did not occur in the interface of reinforcement and matrix resin through the SEM observation. Also, waste FRP and urethane foam were dispersed well into matrix resin as filler.

  • PDF