• Title/Summary/Keyword: Light trapping technique

Search Result 7, Processing Time 0.031 seconds

Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells (박막태양전지의 광포획 기술 현황)

  • Park, Hyeongsik;Shin, Myunghoon;Ahn, Shihyun;Kim, Sunbo;Bong, Sungjae;Tuan, Anh Le;Hussain, S.Q.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.

A Study on Thin-Film Silicon Solar Cells with Multi-Architecture Etching Technique to Improve Light Trapping (광 포획 향상을 위한 다중 아키텍처 식각 기술을 적용한 박막 실리콘 태양전지에 관한 연구)

  • Hyeong Gi Park;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.337-344
    • /
    • 2024
  • This work focuses on improving the light-harvesting efficiency of thin-film silicon solar cells through innovative multi-architecture surface modifications. To create a regular optical structure, a lithographic process was performed to form it on a glass substrate through various etching processes, from Etch-1 to Etch-3. AZO was deposited on top of the structures and re-etched to create a multi-architectural surface. These surface-modified structures improved the light absorption and overall performance of the solar cell through changes in optical and physical properties, which we will analyze. In addition, we investigated the effect of post-cleaning on the etched glass structures through EDX analysis to understand the mechanism of the etching action. The results of this study are expected to provide important guidelines for the design and fabrication of solar cells and other photovoltaic devices.

Characterization of carrier transport and trapping in semiconductor films during plasma processing

  • Nunomura, Shota;Sakata, Isao;Matsubara, Koji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.391-391
    • /
    • 2016
  • The carrier transport is a key factor that determines the device performances of semiconductor devices such as solar cells and transistors [1]. Particularly, devices composed of in amorphous semiconductors, the transport is often restricted by carrier trapping, associated with various defects. So far, the trapping has been studied for as-grown films at room temperature; however it has not been studied during growth under plasma processing. Here, we demonstrate the detection of trapped carriers in hydrogenated amorphous silicon (a-Si:H) films during plasma processing, and discuss the carrier trapping and defect kinetics. Using an optically pump-probe technique, we detected the trapped carriers (electrons) in an a-Si:H films during growth by a hydrogen diluted silane discharge [2]. A device-grade intrinsic a-Si:H film growing on a glass substrate was illuminated with pump and probe light. The pump induced the photocurrent, whereas the pulsed probe induced an increment in the photocurrent. The photocurrent and its increment were separately measured using a lock-in technique. Because the increment in the photocurrent originates from emission of trapped carriers, and therefore the trapped carrier density was determined from this increment under the assumption of carrier generation and recombination dynamics [2]. We found that the trapped carrier density in device grade intrinsic a-Si:H was the order of 1e17 to 1e18 cm-3. It was highly dependent on the growth conditions, particularly on the growth temperature. At 473K, the trapped carrier density was minimized. Interestingly, the detected trapped carriers were homogeneously distributed in the direction of film growth, and they were decreased once the film growth was terminated by turning off the discharge.

  • PDF

The Effect of Metal Back-reflective Layers on the Performance of Transfer Printed GaAs Solar Cells (금속 후면 반사막이 GaAs 태양전지의 효율에 미치는 영향)

  • Choi, Wonjung;Kim, Chang Zoo;Kang, Ho Kwan;Jo, Sungjin
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.73-77
    • /
    • 2014
  • To investigate the effect of metal back-reflective layers (MBLs) on the performance of GaAs solar cells, we fabricated GaAs solar cells on Al and Ag metal layers using the transfer printing technique. We also investigated the effect of MBL texturing on the performance of transfer printed GaAs solar cells. Transfer printed solar cells with MBLs exhibited improved photovoltaic performance compared to solar cells without MBLs due to light trapping. We demonstrated GaAs solar cells with MBLs on a flexible substrate and performed systematic bending tests. All the measured characteristics of solar cells showed little change in performance.

A review of analytical method for volatile fatty acids as designated offensive odorants in Korea (악취성 유기지방산 성분의 분석기술)

  • Ahn, Ji-Won;Kim, Yong-Hyun;Kim, Ki-Hyun;Song, Hee-Nam
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.91-101
    • /
    • 2012
  • A list of volatile fatty acids (VFA) including propionic acid, butyric acid, isovaleric acid, valeric acid, etc. is well known for offensive odorants. The analysis of odorant VFA is a highly delicate task due to high reactivity and unstable recovery rate. At present, analytical methods of VFA are recommended to include alkali impregnation filter method and alkali absorption method by the malodor prevention law of the Korea Ministry of Environment (KMOE). In this review, a survey has been made to explore various approaches available for the analysis of VFA to include both official methods of the KMOE and others. In light of the unreliability of those established analytical methods, it is highly desirable to develop some substituting methods for VFA. Among such options, one may consider such option as sorbent tube (ST) sampling and cryogenic trapping-thermal desorption technique. Moreover, procedures used for standard preparation, sampling steps, and instrumental detection stage are also evaluated. Application of container sampling (like Tedlar bag) is however not recommendable due to significant (sorptive) loss in sampling and in storage stage. In the detection stage, the use of GC/MS is recommendable to replace GC/FID due to the presence of diverse interfering substances. Thus, it is essential to properly establish the basic quality assurance (QA) for VFA analysis in air.

Improvement of haze ratio of DC-sputtered ZnO:Al thin films through HF vapor texturing

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.319.1-319.1
    • /
    • 2016
  • Recently, the Al-doped ZnO (ZnO:Al) films are intensively used in thin film a-Si solar cell applications due to their high transmittance and good conductivity. The textured ZnO:Al films are used to enhance the light trapping in thin film solar cells. The wet etch process is used to texture ZnO:Al films by dipping in diluted acidic solutions like HCl or HF. During that process the glass substrate could be damaged by the acidic solution and it may be difficult to apply it for the inline mass production process since it has to be done outside the chamber. In this paper we report a new technique to control the surface morphology of RF-sputtered ZnO:Al films. The ZnO:Al films are textured with vaporized HF formed by the mixture of HF and H2SiO3 solution. Even though the surface of textured ZnO:Al films by vapor etching process showed smaller and sharper surface structures compared to that of the films textured by wet etching, the haze value was dramatically improved. We achieved the high haze value of 78% at the wavelength of 540 nm by increasing etching time and HF concentration. The haze value of about 58% was achieved at the wavelength of 800 nm when vapor texturing was used. The ZnO:Al film texture by HCl had haze ratio of about 9.5 % at 800 nm and less than 40 % at 540 nm. In addition to low haze ratio, the texturing by HCl was very difficult to control etching and to keep reproducibility due to its very fast etching speed.

  • PDF

Quantitative Approaches for the Determination of Volatile Organic Compounds (VOC) and Its Performance Assessment in Terms of Solvent Types and the Related Matrix Effects

  • Ullah, Md. Ahsan;Kim, Ki-Hyun;Szulejko, Jan E.;Choi, Dal Woong
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • For the quantitative analysis of volatile organic compounds (VOC), the use of a proper solvent is crucial to reduce the chance of biased results or effect of interference either in direct analysis by a gas chromatograph (GC) or with thermal desorption analysis due to matrix effects, e.g., the existence of a broad solvent peak tailing that overlaps early eluters. In this work, the relative performance of different solvents has been evaluated using standards containing 19 VOCs in three different solvents (methanol, pentane, and hexane). Comparison of the response factor of the detected VOCs confirms their means for methanol and hexane higher than that of pentane by 84% and 27%, respectively. In light of the solvent vapor pressure at the initial GC column temperature ($35^{\circ}C$), the enhanced sensitivity in methanol suggests the potential role of solvent vapor expansion in the hot injector (split ON) which leads to solvent trapping on the column. In contrast, if the recurrent relationships between homologues were evaluated using an effective carbon number (ECN) additivity approach, the comparability assessed in terms of percent difference improved on the order of methanol (26.5%), hexane (6.73%), and pentane (5.24%). As such, the relative performance of GC can be affected considerably in the direct injection-based analysis of VOC due to the selection of solvent.