• Title/Summary/Keyword: Light stress mechanism

Search Result 53, Processing Time 0.02 seconds

Biochemical Aspect of Superoxide Toxicity to Plant Mitochondria (식물 미토콘드리아에 대한 Superoxide독성의 생화학적 측면)

  • Jung, Jin;In, Man-Jin
    • Applied Biological Chemistry
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 1989
  • Biochemical consequence of the accumulation in cells of superoxide $(O^{-}_{2})$ which was proposed to be probably a common chemical factor in the secondary process of the mechanism of chilling injury as well as in the visible light photodamage in cells of higher plants, has been investigated in the present work. Especially focused was the destructive effect of $O^{-}_{2}$ on the biochemical activity of mitochondria, as informations which support the suggestion that mitochondrial inner membrane is the major site of $O^{-}_{2}$ production have been collected. Mitochondria and submitochondrial particles (SMP) were prepared from soybean hypocotyls for this case study. When SMP were treated with the electrolytically produced $O^{-}_{2}$ they suffered not only inhibition of the membrane-bound enzymes as demonstrated by cytochrome c oxidase, but also lipid peroxidation of membrane as proved by malondialdehyde production. Malate dehydrogenase present in the protein extract from mitochondrial matrix was also inhibited by the $O^{-}_{2}$ treatment. These results exhibited the chaotic effect of the overproduction and accumulation of $O^{-}_{2}$ in cells under a certain abnormal circumstance such as environmental stress on the physiological function of mitochondrial; disruption of the cellular metabolic pathways and the structural integrity of membrane.

  • PDF

The Effect of NaCI on the Growth and Ginsenoside Production from Ginseng Hairy Root (인삼모상근의 생장과 Ginsenoside 생산에 미치는 NaCl의 영향)

  • Kim, Yu-Jin;Sim, Ju-Sun;;Lee, Chung-Hyae;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.2
    • /
    • pp.94-99
    • /
    • 2008
  • Korean ginseng (Panax ginseng C.A. Meyer) is very difficult to obtain stable production of qualified ginseng roots because of variable stresses in soil environments. High salt concentrations in the ginseng nursery soil environment of Korea is one of important reducing factors for the stable production of quality ginseng. These studies were accomplished to identify the growth rate and production of ginsenoside from ginseng hairy root against NaCI. In the MS liquid culture, the highest contents and productivity of ginsenosides were appeared at 4 week after onset of the treatment of 0.1 M NaCI. And 0.24 M NaCI was more effective on the growth of ginseng hairy root under light condition than dark condition. Plants generally produce secondary metabolites in nature as a defense mechanism against pathogenic and insect attack. In this study, NaCI acts as a kind of stress as well as elicitor for production of ginsenosides.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF