• Title/Summary/Keyword: Light shielding

Search Result 99, Processing Time 0.026 seconds

Effects of Photoperiod and Shading on Growth and Yield of Licorice

  • Han, Sang-Sun;Kim, Yeon-Bok;Lee, Sang-Yong;Chang, Kwang-Jin;Lee, Han-Bum;Lee, Ki-Cheol;Park, Cheol-Ho
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.13-25
    • /
    • 2001
  • Growth and yield of licorice were investigated under the different conditions of photoperiod and shading in order to establish its cultural practice for the domestic production with the aim to substitute the import. The photoperiod was adjusted to 8,10, and 12 h by shielding plants from the light with blackout curtain. Large seedlings(11-20g) appeared to be affected by photoperiod since around 65 days. Most of growth parameters, including plant height, number of leaf, fresh and dry weight of plant and root, were the highest in 12 h photoperiod among all the photoperiod levels, excepting stem diameter which was the highest in 10 h photoperiod(4.5mm). Each photoperiod was similar to each other in root length and diameter. Small seedlings(4-l0g) showed a similar trend to large seedlings. The results from field photoperiod experiment demonstrated that 12 h photoperiod was also the best among three photoperiod treatments in plant height, stem diameter, number of leaf, root length, fresh and dry weight of plant and root. The effect of shading was tested under the three levels of control (0%), half-shading (55%), and full shading (90%). Shading remarkably suppressed the growth and yield, compared to no-shading. Although plant height and root length were little affected by the shading, stem and root diameters were heavily reduced.

  • PDF

A Study on the Illumination Environment of Ultrasound Examination Room (초음파 검사실의 조도 환경에 관한 연구)

  • Im, In-Chul;Lee, Hyo-Yeong;An, Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.213-219
    • /
    • 2017
  • The purpose of study is provide the basic data for set up proper illuminance of examination room that put purpose of an empirical study basic data about examination environment setting of the ultrasonic examination on design the examination environment of a new ultrasonic examination. As a method, to investigate the ultrasonic environment related to illumination to take a survey on the ultrasonic examination about test object to 48 parts of six units of general hospital in Busan. As a result, All Door + Curtain showed high scores in analyzing the gender, age, examination part in the case of ultrasonic examination room shielding and LED and light source control is required in the case of kind of light source. In the ultrasonic examination environment survey, the illuminance brightness is average 10 Lux which is included illuminance brightness range recommended the WHO and CEC and illuminance brightness of ultrasonic examination waiting room(ultrasonic examination waiting room, corridor) indicate average 300~800 Lux and it satisfied hospital illumination environment more than 300 Lux recommended by KSA 3011. In conclusion, Basic data suggested that improved future ultrasonic examination environment or designed new examination room on the basis of analysis result of general background and ultrasonic examination related to environment factor.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

A Study on the Possibility of Self-Correction in the Market for Protecting Internet Privacy (인터넷 개인정보보호의 시장자체해결가능성에 대한 연구)

  • Chung, Sukkyun
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.27-37
    • /
    • 2012
  • Internet privacy has become a significant issue in recent years in light of the sharp increase in internet-based social and economic activities. The technology which collects, processes and disseminates personal information is improving significantly and the demand for personal information is rising given its inherent value in regard to targeted marketing and customized services. The high value placed on personal information has turned it into a commodity with economic worth which can be transacted in the marketplace. Therefore, it is strongly required to approach the issue of privacy from economic perspective in addition to the prevailing approaches. This article analyzes the behaviors of consumers and firms in gathering personal information, and shielding it from unauthorized access, using a game theory framework in which players strive to do their best under the given conditions. The analysis shows that there exist no market forces which require all firms to respect consumer privacy, and that government intervention in the form of a nudging incentive for information sharing and/or strict regulation is necessary.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (I) - Laser Weldability of Al-Si Coated Boron Steel Used for Hot Stamping Process - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (I) - 핫스탬핑 공정에 사용되는 Al-Si 코팅된 보론강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Lee, Su Jin;Suh, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1367-1372
    • /
    • 2014
  • As the awareness of the environmental crisis has recently increased around the world, numerous studies in the transport industry have been conducted to solve this problem through lightweight car bodies. The hot-stamping process has been presented as solution to achieve a light weight. Hot-stamping is a method that is used to obtain ultra-high strength steel (1,500 MPa or greater) by simultaneously forming and cooling boron steel in a press die after heating it to a temperature of $900^{\circ}C$ or above. This study involved a, fundamental examination of laser parameters to investigate the laser weldability of boron steel. As a result, the following optimum parameters for the shielding gas were found: Q = 20 l/min, ${\alpha}=40^{\circ}$, d = 20mm, and l = 0 mm. The hardness of butt weldment increasesed sharply as a result of martensite formation at the fusion zone.

Fabrication of Poly(methyl methacrylate) Beads Monolayer Using Rod-coater and Effects of Solvents, Surfactants and Plasma Treatment on Monolayer Structure (Rod 코팅을 이용한 Poly(methyl methacrylate) 비드의 단일층 형성 및 단일층 구조에 미치는 용매, 계면활성제, 플라즈마 처리의 영향)

  • Kim, Da Hye;Ham, Dong Seok;Lee, Jae-Heung;Huh, Kang Moo;Cho, Seong-Keun
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Fabrication of monolayer is important method for enhancing physical and chemical characteristics such as light shielding and antireflection while maintaining thin film properties. In previous studies, monolayers were fabricated by various methods on small substrates, but processes were complicated and difficult to form monolayers with large area. We used rod coating equipment with a small amount of coating liquid to form a HCP (hexagonal closed packing) coating of PMMA beads on PET(poly(ethylene terephthalate)) substrate with $20cm{\times}20cm$ size. We observed that changes in morphologies of monolayers by using the solvents with different boiling points and vapor pressures, by adapting surfactants on particles and by applying plasma treatment on substrates. The coverage was increased by 20% by optimizing the coating conditions including meniscus of beads, control of the attraction - repulsion forces and surface energy. This result can potentially be applied to optical films and sensors because it is possible to make a uniform and large-scale monolayer in a simple and rapid manner when it is compared to the methods in previous studies.

A Study on the Environment for Lowbirth Weight Infants in Neonatal Intensive Care Unit in the United States (신생아집중간호단위 환경과 저체중출생아의 반응에 대한 연구)

  • Han Kyung Ja
    • Child Health Nursing Research
    • /
    • v.4 no.2
    • /
    • pp.159-176
    • /
    • 1998
  • In effort to conduct comparative study on the caregiving environment of Neonatal Intensive Care Unit(NICU) in both U. S and Korea, this study was been conducted first in the U.S. Purpose : The purpose of this study is to identify the physical environment and direct caregiving practices to lowbirth weight infants in NICU in the US. It also aims to examine the NICU outcome status and behavioral reponses of lowbirth weight infants. Methods : A study design using descriptive and inferential statistics was been conducted through an observational, field method. A sample of 15 preform infants admitted to NICU were recruited for the study. The subjects were those with birth weight between 1,000 gm to 1,500 gm, born at the gestation period of 27 to 33 weeks, and without any chromosomal or other genetic anomalies, major congenital infections, or maternal illness. Thirty minutes observation(three times of ten minutes of continuous observation)of the infant's behavior and physiological status, and an four-hour observation of the physical environment and direct care giving procedures were been conducted on the 3rd and 10th day after birth, and on the day of discharge from the NICU or at 34weeks postconception. The data to be collected were in four areas : the demograghic characteristics of the infants, the physical environment and care giving procedures, the frequency of the infant's designated behavior and physiological response, and NICU outcome variables. A descriptive analysis and Kruskal-Wallis, Pearson r were been applied according to variable characteristics. Results : 1. Mother's mean age was 29.47. The sample consisted of 6 males and 9 females. Mean gestational ages were 29.17 weeks. Mean birth weight was 1236.33g. Mean Apgar scores at one minute were 6.6, and 7.8 at five minutes. 2. The location for the incubator was in the distance from the light, X-ray screens and nursing station, in proximity to side-lamp, telephone and faucet on the third day after birth. The location for the incubator was in the distance from the light and radio on the tenth day and in proximity to nursing station on the day of dischage from the NICU or at 34weeks postconception. 3. Nesting was the most applying aids to the infants. And foot roll, shielding and plastic frame were frequently using by nurses for facilitating well modulated restful posture. 4. There were statistically significant changes in the patterns of physical environment included locating the infant's incubator and bedding, specific aids to self regulation on the 3rd and 10th day after birth, and on the day of discharge from the NICU or at 34weeks postconception. 5. Statistically significant changes were not appeared in the patterns of direct caregiving procedure to the infants included stress inducing or reducing manipulations on the 3rd and 10th day after birth, and on the day of discharge from the NICU or at 34weeks postconception. 6. The stress response of the infants in NICU were significantly reduced as the infants grow older. 7. There were not statistically significant correlation between the physical envronment and the stress responses of the infants in NICU. 8. There were statistically significant correlation between the direct caregiving procedure to the infants and the stress response of the infants in NICU in the second and third observation on the day three. 9. Average weight gain per day from birth to discharge was 38.73g, number of days in the hospital was 42.60, number of days before bottle feeding was 3.6. Postconception age starting bottle feed ing was 31/sup +5/ weeks. Number of days on mechanical ventilator was average 7.64, 11.42 was an average number of days of oxygen need. Conclusion : It, thus, appears that to minimize the sensorymotor stimulation for the low birthweight preterm infant in NICU, manipulation of care giving practices to the babies whatever the stress inducing or reducing procedures, have to be limited in the immediate early stage after birth. And it needed to be reexamine to identify the appropriate and specific physical environment and the patterns of direct caregiving to the low birthweight preform infant as the infants grow older in NICU.

  • PDF

Investigation of O4 Air Mass Factor Sensitivity to Aerosol Peak Height Using UV-VIS Hyperspectral Synthetic Radiance in Various Measurement Conditions (UV-VIS 초분광 위성센서 모의복사휘도를 활용한 다양한 관측환경에서의 에어로솔 유효고도에 대한 O4 대기질량인자 민감도 조사)

  • Choi, Wonei;Lee, Hanlim;Choi, Chuluong;Lee, Yangwon;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.155-165
    • /
    • 2020
  • In this present study, the sensitivity of O4 Air Mass Factor (AMF) to Aerosol Peak Height (APH) has been investigated using radiative transfer model according to various parameters(wavelength (340 nm and 477 nm), aerosol type (smoke, dust, sulfate), aerosol optical depth (AOD), surface reflectance, solar zenith angle, and viewing zenith angle). In general, it was found that O4 AMF at 477 nm is more sensitive to APH than that at 340 nm and is stably retrieved with low spectral fitting error in Differential Optical Absorption Spectroscopy (DOAS) analysis. In high AOD condition, sensitivity of O4 AMF on APH tends to increase. O4 AMF at 340 nm decreased with increasing solar zenith angle. This dependency isthought to be induced by the decrease in length of the light path where O4 absorption occurs due to the shielding effect caused by Rayleigh and Mie scattering at high solar zenith angles above 40°. At 477 nm, as the solar zenith angle increased, multiple scattering caused by Rayleigh and Mie scattering partly leads to the increase of O4 AMF in nonlinear function. Based on synthetic radiance, APHs have been retrieved using O4 AMF. Additionally, the effect of AOD uncertainty on APH retrieval error has been investigated. Among three aerosol types, APH retrieval for sulfate type is found to have the largest APH retrieval error due to uncertainty of AOD. In the case of dust aerosol, it was found that the influence of AOD uncertainty is negligible. It indicates that aerosol types affect APH retrieval error since absorption scattering characteristics of each aerosol type are various.