• Title/Summary/Keyword: Light mask

Search Result 140, Processing Time 0.03 seconds

Resolution Limit Analysis of Isolated Patterns Using Optical Proximity Correction Method with Attenuated Phase Shift Mask (Attenuated Phase Shift Mask에 광 근접 효과 보정을 적용한 고립 패턴의 해상 한계 분석)

  • 김종선;오용호;임성우;고춘수;이재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.901-907
    • /
    • 2000
  • As the minimum feature size for making ULSI approaches the wavelength of light source in optical lithography, the aerial image is so hardly distorted because of the optical proximity effect that the accurate mask image reconstruction on wafer surface is almost impossible. We applied the Optical Proximity Correction(OPC) on isolated patterns assuming Attenuated Phase Shift Mask(APSM) as well as binary mask, to correct the widening of isolated patterns. In this study, we found that applying OPC to APSM shows much better improvement not only in enhancing the resolution and fidelity of t도 images but also in enhancing the process margin than applying OPC to the binary mask. Also, we propose the OPC method of APSM for isolated patterns, the size of which is less than the wavelength of the ArF excimer laser. Finally, we predicted the resolution limit of optical lithography through the aerial image simulation.

  • PDF

Refilled mask structure for Minimizing Shadowing Effect on EUV Lithography

  • Ahn, Jin-Ho;Shin, Hyun-Duck;Jeong, Chang-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.13-18
    • /
    • 2010
  • Extreme ultraviolet (EUV) lithography using 13.5 nm wavelengths is expected to be adopted as a mass production technology for 32 nm half pitch and below. One of the new issues introduced by EUV lithography is the shadowing effect. Mask shadowing is a unique phenomenon caused by using mirror-based mask with an oblique incident angle of light. This results in a horizontal-vertical (H-V) biasing effect and ellipticity in the contact hole pattern. To minimize the shadowing effect, a refilled mask is an available option. The concept of refilled mask structure can be implemented by partial etching into the multilayer and then refilling the trench with an absorber material. The simulations were carried out to confirm the possibility of application of refilled mask in 32 nm line-and-space pattern under the condition of preproduction tool. The effect of sidewall angle in refilled mask is evaluated on image contrast and critical dimension (CD) on the wafer. We also simulated the effect of refilled absorber thickness on aerial image, H-V CD bias, and overlapping process window. Finally, we concluded that the refilled absorber thickness for minimizing shadowing effect should be thinner than etched depth.

Study of ion beam shaping of an anode-type ion source coupled with a Whenelt mask

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.70-74
    • /
    • 2018
  • We fabricated an anode-type ion source driven by a charge repulsion mechanism and investigated its beam shape controlled by a Whenelt mask integrated at the front face of the source. The ion beam shape was observed to vary by changing the geometry of the Whenelt mask. As the angle of inclination of the Whenelt mask was varied from $40^{\circ}$ to $60^{\circ}$, the etched area at a thin film was reduced from 20 mm to 7.5 mm at the working distance of 286 mm, and the light transmittance through the etched surface was increased from 78% to 80%, respectively. In addition, for the step height difference, ${\Delta}$ between the inner mask and the outer mask of ${\Delta}=0$, -1 mm, and +1 mm, we observed the ion beam shape was formed to be collimated, diverged, and focused, respectively. The focal length of the focused beam was 269 mm. We approved experimentally a simple way of controlling the electric field of the ion beam by changing the geometry of the Whenelt mask such that the initial direction of the ion beam in the plasma region was manipulated effectively.

Polymer-waveguide Bragg-grating Devices Fabricated Using Phase-mask Lithography

  • Park, Tae-Hyun;Kim, Sung-Moon;Oh, Min-Cheol
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.401-407
    • /
    • 2019
  • Polymeric optical waveguide devices with Bragg gratings have been investigated, for implementing tunable lasers and wavelength filters used in wavelength-division-multiplexed optical communication systems. Owing to the excellent thermo-optic effect of these polymers, wavelength tuning is possible over a wide range, which is difficult to achieve using other optical materials. In this study the phase-mask technology, which has advantages over the conventional interferometeric method, was introduced to facilitate the fabrication of Bragg gratings in polymeric optical waveguide devices. An optical setup capable of fabricating multiple Bragg gratings simultaneously on a 4-inch silicon wafer was constructed, using a 442-nm laser and phase mask. During fabrication, some of the diffracted light in the phase mask was totally reflected inside the mask, which affected the quality of the Bragg grating adversely, so experiments were conducted to solve this issue. To verify grating uniformity, two types of wavelength-filtering devices were fabricated using the phase-mask lithography, and their reflection and transmission spectra were measured. From the results, we confirmed that the phase-mask method provides good uniformity, and may be applied for mass production of polymer Bragg-grating waveguide devices.

Analysis of Post Cleaning Solution After Wet Cleaning of Shadow Mask Used in OLED Process (OLED공정에서 사용되는 섀도마스크의 습식 세정 후 세정표면 및 세정용액 분석에 관한 연구)

  • Cui, Yinhua;Pyo, Sung Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.7-10
    • /
    • 2016
  • The post cleaning method for clean the shadow mask using in OLED (organic light emitting diode) emitter layer is always reforming. The cleaning solution and analysis method of shadow mask is still lack and not optimized. We use the simple and useful analytical method to determine the quantity and quality of organic and inorganic residue on surface of shadow mask. Finally analyze the cleaning solution using Raman spectroscopy efficiently.

Reverse design of photomask for optimum fiedelity in optical lithography (광리소그래피에서 최적 모양의 패턴 구현을 위한 포토마스크 역설계)

  • 이재철;오명호;임성우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.62-67
    • /
    • 1997
  • The optical lithography wit an ArF excimer laser as a light source is expected to be used in the mass production of giga-bit DRAMs which require less than 0.2.mu.m minimum feature size. In this case, the distortion of a patterned image becomes very severe, since the lithography porcess is performed at the resolution limit. Traditionally, the photomask pattern was designed and revised with trial-and-error methods, such as repeated execution of process simulators or actual process experiments which require time and effort. Ths paper describes a program which automatically finds an optimal mask pattern. The program divides the mask plane into cells with same sizes, chooses a cell randomly, changes the transparent/opaque property of the cell, and eventually genrates a mask pattern which produces required image pattern. The program was applied to real DRAM cell patterns to produce mask patterns which genertes image patterns closer to object images than original mask patterns.

  • PDF

A Study of Properties of GaN and LED Grown using In-situ SiN Mask (In-situ SiN 박막을 이용하여 성장한 GaN 박막 및 LED 소자 특성 연구)

  • Kim, Deok-Kyu;Yoo, In-Sung;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.945-949
    • /
    • 2005
  • We have grown GaN layers with in-situ SiN mask by metal organic chemical vapor deposition (MOCVD) and study the physical properties of the GaN layer. We have also fabricate PN junction light emitting diode (LED) to investigate the effect of the SiN mask on its optical property By inserting a SiN mask, (102) the full width at half maximum (FWHM) decreased from 480 arcsec to 409 arcsec and threading dislocation (TD) density decreased from $3.21{\times}10^9\;cm^{-2}$ to $9.7{\times}10^8\;cm^{-2}$. The output power of the LED with a SiN mask increased from 198 mcd to 392 mcd at 20 mA. We have thus shown that the SiN mask improved significantly the physical and optical properties of the GaN layer.

Consumer awareness about mask repurchase intention during coronavirus: The case of Chinese sample

  • Cui, Yu Hua
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.2
    • /
    • pp.93-104
    • /
    • 2021
  • The worldwide coronavirus pandemic has brought to light the importance of having a reliable supply of masks for each person. This study aims to understand the effect of personal awareness (including community, others', and safety awareness) on consumption conformity and the repurchase intention of masks. The research method used the SPSS 22.0 and AMOS 22.0 statistical systems to analyze descriptive statistics in terms of reliability, validity, structural equation modeling, and moderated regression analysis. A total of 272 Chinese participants were recruited via an online survey website (www.sojump.com) from May 1 to May 14, 2020. Findings indicated that mask users' awareness can be categorized into three distinct types: community, others', and safety awareness. The more community and safety awareness is perceived, the higher the level of consumption conformity. In contrast, others' has no statistical effect on consumption conformity or repurchase intention. The positive influence of consumption conformity on the repurchase intention of masks is also weaker than price perception. However, another moderating variable, mask quality, has no moderating effect. The results of this study can help mask manufacturers and distributors retain their customers, resulting in reasonable protective measures while maintaining market order. Theoretical and managerial implications for mask suppliers are also provided.

Linear Predictor Using Charge-Coupled Devices (CCD를 이용한 선형예측기)

  • 최태영;신철재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 1987
  • An electro-optic system using linear photosensitive Charge Coupled Devices(CCDs) having dummy pixels has been proposed for realzation of linear prodictor in the differential pulse code modulation(DPCM). The system consists of three components as conventional system:input light source, spatial filter(mask) and CCD line scanning sensor. For the delay time due to the dummy pixels in CCD, modifying conventional mask, a new dispersive mask is proposed, of which every prediction coefficient is dispersed on the more than one element, the characteristics of the system using the proposed dispersive mask are analyzed theoretically and verified with experiment.

  • PDF

Blue Light Generation in a Quasi-Phase-Matched $LiTaO_3$ Optical Waveguide (준위상정합된 리튬탄탈레이트 광도파로에서의 청색 광파 생성)

  • 이상윤;신상영;진용성
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.173-183
    • /
    • 1995
  • Blue light of 0.15mW at 417.6nm is generated in a quasi-phase-matched LITaO$_{3}$ optical waveguide. A new heat-treatment technique using a metal-oxide mask is proposed to fabricate the periodic domain-inverted grating with less degraded optical properties. The mask promotes the proton indiffusion by inhibition of the proton outdiffusion during the heat treatment. It reduces the amount of the initial proton exchange for the domain inversion and prevents the formation of crystal defects on the surface accompanied by the proton outdiffusion. Consequently, it minimizes the degradation of nonlinear coefficient and scattering loss caused by the initial proton exchange.

  • PDF