• 제목/요약/키워드: Light harvesting efficiency

검색결과 67건 처리시간 0.022초

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권2호
    • /
    • pp.69-74
    • /
    • 2010
  • Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

F$\ddot{o}$rst energy transfer 를 적용한 준고체 DSSC 의 효율향상 (Enhanced Light Harvesting from F$\ddot{o}$rst-type resonance Energy Transfer in the Quasi-Solid State Dye-Sensitized Solar Cells)

  • 천종훈;이정관;양현석;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.117.1-117.1
    • /
    • 2011
  • We have demonstrated Forst-type resonance energy transfer (FRET) in the quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and ruthenium complex as an energy acceptor on surface of $TiO_2$. The strong spectral overlap of emission/absorption of energy donor and acceptor is required to get high FRET efficiency. The judicious choice of energy donor allows the enhancement of light harvesting characters of energy acceptor in quasi-solid dye sensitized solar cells which increase the power conversion efficiency. The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발 (Development of High Performance Photoelectrode Paste Doped Glass Powder for Dye-sensitized Solar Cells)

  • ;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제24권5호
    • /
    • pp.427-431
    • /
    • 2011
  • Hybrid $SiO_2-TiO_2$ photoelectrode with different type of layers was investigated in dye-sensitized solar cells (DSSC). Use of a thin layer of nanocrystalline $TiO_2$ would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. So, thus, it becomes necessary to include a $SiO_2-TiO_2$ layer for increase light harvesting effect such that the lower photon conversion due to thin layer could be compensated. In this paper reports the use of transparent high surface area $TiO_2$ layer and an additional $SiO_2-TiO_2$ layer, thus ensuring adequate light harvesting in these devices. The best solar conversion efficiency 6.6% under AM 1.5 was attained with a multi-layer structure using $TiO_2$ layer/$SiO_2-TiO_2$ layer/$TiO_2$ layer for the light harvesting and this had resulted to about 44% increase in photocurrent density of dye-sensitized solar cells.

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo;Oh, Jae-Buem;Roh, Soo-Gyun;Kim, Mi-Ra;Lee, Jin-Kook;Jin, Sung-Ho;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.33-40
    • /
    • 2007
  • We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

중간 광전극에 삽입된 산란층에 의한 염료감응 태양전지의 광수집 성능 향상 (Enhancement of the Light Harvesting of Dye-sensitized Solar Cell by Inserting Scattering Layer)

  • 남정규;김범성;이재성
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.305-309
    • /
    • 2009
  • The effect of light scattering layers (400 nm, TiO$_2$ particle) of 4 $\mu$m thickness on the dye-sensitized solar cell has been investigated with a 12 $\mu$m thickness of photo-anode (20 nm, TiO$_2$ particle). Two different structures of scattering layers (separated and back) were applied to investigate the light transmitting behaviors and solar cell properties. The light transmittance and cell efficiency significantly improved with inserting scattering layers. The back scattering layer structure had more effective transmitting behavior, but separated scattering layer (center: 2 $\mu$m, back: 2 $\mu$m) structure (9.83% of efficiency) showing higher efficiency (0.6%), short circuit current density (0.26 mA/cm$^2$) and fill factor (0.02). The inserting separating two scattering layers improved the light harvesting, and relatively thin back scattering layer (2 $\mu$m of thickness) minimized interruption of ion diffusion in liquid electrolyte.

광합성 기구 조작을 통한 비유황 자색 광합성 세균, Rhodobacter sphaeroides의 생산성 증대 (The improvement of productivity of a photosynthetic purple bacterium, Rhodobacter sphaeroides by manipulating the photosynthetic apparatus)

  • 김낙종;이철균
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.189-192
    • /
    • 2000
  • 광합성 홍색세균의 light harvesting complex II (LHC II)발현 유전자가 제거된 돌연변이종을 halogen 램프 하에서 거리에 따라 광도를 달리하며 배양하여 wild type과 생산성을 비교한 결과 낮은 광도(34 ${\mu}E/m^2/s$)에서는 wild type가 높은 광도 (376, 118 ${\mu}E/m^2/s$)에서는 mutant가 높은 세포농도를 나타내었다. 특히 118 ${\mu}E/m^2/s$에서 LHC $II^-$ mutant가 56% 높은 세포생산량을 보였다. 이는 세포내 pigment양의 감소로 mutual shading effect가 감소하였기 때문으로 판단되었다.

  • PDF

Improvement of Light-Harvesting Efficiency of TiO2 Granules Through Chemical Interconnection of Nanoparticles by Adding TEOT to Spray Solution

  • Lim, Mi Ja;Song, Shin Ae;Kang, Yun Chan;So, Won-Wook;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.632-637
    • /
    • 2015
  • Mesoporous $TiO_2$ granules were prepared by spray pyrolysis using nano-sized titania particles which were synthesized by a hydrothermal method, and they were evaluated as the photoanode of dye-sensitized solar cells. To enhance the cell efficiency, nanoparticles within granules were chemically interconnected by adding titanium ethoxide (TEOT) to colloidal spray solution. The resulting titania particles had anatase phase without forming rutile. $TiO_2$ granules obtained showed about 400 nm in size, the specific surface area of $74-77m^2/g$, and average pore size of 13-17 nm. The chemical modification of $TiO_2$ granules by adding TEOT initially to the colloidal spray solution was proved to be an effective way in terms of increasing both the light scattering within photoanode and the lifetimes of photo-excited electrons. Consequently, the light-harvesting efficiency of TEOT-modified granules (${\eta}=6.72%$) was enhanced about 14% higher than primitive nanoparticles.

태양에너지를 채취하는 색소단백질들의 분자 토포그라피와 에너지전달현상 (Molecular Topography and Energy Transfer in Solar Energy Harvesting Pigment Proteins)

  • 송필순;정진
    • Applied Biological Chemistry
    • /
    • 제23권1호
    • /
    • pp.73-83
    • /
    • 1980
  • 디노프라젤레이트(dinoflagellate)들의 광채취색소단백질들은 안데나색소복합체들 내에서 카로테노이드(페리디닌)로부터 크로필 a로 실질적으로 100%의 효율을 갖는 에너지전달현상을 보여준다. 이와같이 디노프라젤레이트에서 광합성을 위한 태양에너지의 채취가 (특히 청(靑)색광에서) 높은 효율로 일어나는 것은 단백질표면의 갈라진 틈안에 위치한 페리디닌과 프로로필 a의 독특한 분자배치에 기인하는 것이다. 고등식물에서 가로테노이드와 크로로필 a 사이에 일어나는 에너지 전달메카니즘에 관해서도 디노프라젤레이트 안데나 색소복합체들과 비교해서 고찰하였다. Algae에서 광합성을 위한 태양에너지, 특히 적(赤)색광의 채취를 다룬 하나의 예로서 Chroomonas Species의 보조광합성색소단백질인 크로오오 모나스 피코시아닌의 분자토포그라피와 에너지전달도 역시 고찰하였다.

  • PDF