• Title/Summary/Keyword: Light engine

Search Result 333, Processing Time 0.026 seconds

The Characteristics of Engine Noise and its Reduction Techniques (엔진 소음, 진동 특성 및 개선방안)

  • 이재갑;여승동
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.689-700
    • /
    • 1997
  • There are many difficulties in designing the engine structure properly due to the strong conflicts between NVH characteristics and the high performance, light weight and low product cost. Many feasible noise reduction techniques should be carefully incorporated to meet such stringent noise requirements. It is also required that the engine development be carried out by introducing concurrent engineering, in which the analysis and test database are usefully applied to the detail designs from the 1st stage. This paper reviews the significance of the noise characteristics of the structure elements in relation to the combustion pressure. The mechanisms of the crank shaft rumbling, which is the main source having the bad influence on the sound quality, are also explained. The influences of dynamic behavior of engine structure on its noise are investigated, followed by discussions on experimental results of the features necessary for the design of low noise engine concepts.

  • PDF

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

A Study on Bending and Torsion Characteristics and Weight Optimization by Web Shape of Crankshaft for Diesel Engine (디젤 엔진의 Crankshaft Web 형상에 따른 굽힘 및 비틀림 특성과 중량 최적화에 관한 연구)

  • Kim, Jang-Su;Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Recently, it is possible for small sized and high speed diesel engines by development of commonrail system. And in order to increase the engine performance, the cylinder firing pressure is a tendency which increases. On the other side, the weight of engine becomes lightly in spit of high performance diesel engine. Therefore, the weight optimization for engine components is very important point on the design process. Also, the weight optimization must necessarily be considered the robust design against a fatigue failure. This paper focuses on the weight optimization of crankshaft according to web shape at the light duty diesel engine, and torsion characteristics of crankshaft is considered with 1D and 3D analysis tools.

Performance Analysis and Preliminary Design for the Turbo-Shaft Engine of the Multi-Purpose Helicopter (다목적 쌍발 헬리콥터용 터보축 엔진의 성능해석 및 기본설계)

  • Seo, Jeong-Won;Yun, Geon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 2002
  • In this study, the procedures for the preliminary design of the turbo-shaft engine for the light multi-purpose helicopter are established. The engine specifications are determined through the performance analysis on the on-design and off-design conditions by the use of simulation program. In addition, the effect of humidity on the engine performance is examined by considering the change of the gas properties and characteristic maps due to moisture contents. The calculation results show that the engine power is reduced by the existence of moisture in working fluid.

A Study on the Urea-SCR System for NOx Reduction of a light-Duty Diesel Engine (소형 디젤엔진의 NOx 저감을 위한 Urea-SCR 시스템에 관한 연구)

  • Nam Jeong-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.57-63
    • /
    • 2005
  • The effects of an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated with the parameters such as urea-SCR(Selective Catalytic Reduction) and EGR system. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection quantity can be controlled with the urea syringe pump, precisely. The effects of NOx reduction for the urea-SCR system were investigated with and without ECR engine, respectively. It was concluded that the SUF(Stoichiometric Urea Flow) is calculated and the NOx results are visualized with engine speed and load. Furthermore, the NOx map is made from this experimental results. It was suggested, therefore, that NOx reduction effects of the urea-SCR system without the EGR engine were better than that with the EGR engine except of low load and low speed.

Numerical Study on Strategy of Applying Low Pressure Loop EGR for a Heavy Duty Diesel Engine to Meet EURO-4 Regulation (저압라인 EGR을 적용한 대형 디젤엔진의 EURO-4 규제 대응 전략에 관한 수치적 연구)

  • Ha Changhyun;Lee Seungjae;Lee Kyoseung;Chun Kwangmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • EGR system has been widely used to reduce NOx emission in light duty diesel engines, but its application to heavy duty diesel engine is not common yet. In this study, simulation model for EURO-3 engine was developed using commercial code WAVE and then verified by comparison with experimental results in performance and emission. Possibility to meet EURO-4 regulation using modified EURO-3 engine with LPL EGR system was studied. Each components of the engine was modeled using CATIA and WaveMesher. The engine test mode was ESC 13 and injection timing and quantity were changed to compensate engine performances, because applying EGR causes power reduction. As a results of the simulation, it was found that EURO-4 NOx regulation could be achieved by applying LPL EGR system to current EURO-3 engine even with some BSFC deterioration.

The Design of Object-of-Interest Extraction System Utilizing Metadata Filtering from Moving Object (이동객체의 메타데이터 필터링을 이용한 관심객체 추출 시스템 설계)

  • Kim, Taewoo;Kim, Hyungheon;Kim, Pyeongkang
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1351-1355
    • /
    • 2016
  • The number of CCTV units is rapidly increasing annually, and the demand for intelligent video-analytics system is also increasing continuously for the effective monitoring of them. The existing analytics engines, however, require considerable computing resources and cannot provide a sufficient detection accuracy. For this paper, a light analytics engine was employed to analyze video and we collected metadata, such as an object's location and size, and the dwell time from the engine. A further data analysis was then performed to filter out the target of interest; as a result, it was possible to verify that a light engine and the heavy data analytics of the metadata from that engine can reject an enormous amount of environmental noise to extract the target of interest effectively. The result of this research is expected to contribute to the development of active intelligent-monitoring systems for the future.

Studies on Development of Fuel Substitute for Diesel Engine with Seed Oil of Evodia Daniellii (쉬나무 종실유의 디젤기관 대체연료 개발에 관한 연구 - Engine 성능 및 견인력을 중심으로 -)

  • Choi, Kyu-Hong;Hong, Sung-Gak;Lee, Yeo-Ha;Lee, Seung-Kee;Shin, Seung-Geuk
    • Journal of Korea Foresty Energy
    • /
    • v.7 no.1
    • /
    • pp.28-36
    • /
    • 1987
  • To know the possibility of fuel substitution for Diesel engine with the seed oil of Evodia daniellii, which is one of the native oil seed trees in Korea. the refined seed oil mixed with light oil in the various rates was tested in the 8 PS Diesel engine: the output, the fuel consumption rate, the governor performance, the rpm stability in the total loading condition. the content of graphite in the burned gas, and the traction coefficients at the different gear stages were maintained The following results were discussed. 1. The output at the normal revolution (2200rpm)was increased as the percent seed oil increased. At the lower rpm (2000-1500rpm )there were no consistent difference in the outputs among fuels of the different percent seed oil 2. The rate of fuel consumption was inclosed as the percent seed oil increased in each loading condition. 3. The more percent sud oil was mixed in the fuel. the better governor performance appeared at both the instantaneous and stable speed. 4. The more percent seed oil was mixed In the fuel, the more stable rpm ratio was maintained 5. The graphite content In the burned gas was increased as the load increased, but there was no apparent difference in the content at each load among the 100$\%$ seed oil, the 100$\%$ light oil, and the mixtures in various rates. 6. In all fuel mixtures the maximam traction coefficent appeared at the third transmission gear stage. Generally in over all transmission gear stages the fuel mixtures of the seed oil:light oil ratio from 7:3 to 5:5 resulted greater traction force than the other fuels.

  • PDF

Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass (과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구)

  • Park, Jung-Soo;Lee, Kyo-Seung;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.