• Title/Summary/Keyword: Light engine

Search Result 335, Processing Time 0.027 seconds

Design Optimization of Automotive Rear Cross Member with Cold-rolled Ultra High Strength Steel (냉연 초고강도강 적용 차량용 리어 크로스 멤버 형상 설계 변수 최적화)

  • J. Y. Kim;S. H. Kim;D. H. Choi;S. Hong
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2024
  • With the increasing global interest in carbon neutrality, the automotive industry is also transitioning to the production of eco-friendly cars, specifically electric vehicles. In order to achieve comparable driving distances to internal combustion engine vehicles, the application of high-capacity battery packs has led to an increase in vehicle weight. To achieve light-weighting and durability requirements of automotive components simultaneously, there is a demand for research on the application of Ultra-High Strength Steel (UHSS). However, when manufacturing chassis components using UHSS, there are challenges related to fracture defects due to lower elongation compared to regular steel sheets, as well as spring-back issues caused by high tensile strength. In this study, a simulated specimen that is not affected by the property changes of four materials was designed to improve formability of the rear cross member, which is the most challenging automotive chassis component. The influence and correlation of material-specific variables were analyzed through finite element analysis (FEA) for each material with tensile strength of 440, 590, 780, and 980 MPa grades, resulting in the development of a predictive equation. To validate the equation, the simulated specimens of 980 MPa grade were produced from the test molds. Then the reliability of the FEA and predictive equation was verified with measured specimen data using a 3D scanner. The results of this study can be proposed to improve the formability of UHSS chassis components in future researches.

Analysis of the influence degree of each factor on the linkage affecting the lever actuating force in an implant transport device for the treatment of eye diseases (안과질환 처치를 위한 임플란트 수송장치에서 레버 작동력에 영향을 주는 연동장치에 대한 인자별 영향도 분석 )

  • Jeong-Won Lee;Joong-Seob Guk
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.1-8
    • /
    • 2024
  • Macular degeneration is a disease that damages the macula, the center of the retina, and is one of the three major eye diseases along with glaucoma and diabetic retinopathy. The optic nerve and most of the photoreceptor cells are located here, and since this is where images of objects are formed, it is the most important area for vision. The main symptom of macular degeneration is the inability to clearly distinguish the shape of objects or the inability to distinguish colors and light and dark. It is also a serious eye disease that causes black spots in the center of the field of vision. However, it is difficult to distinguish it from the form of vision loss due to presbyopia, so early diagnosis is often missed. The most common treatment for macular degeneration is antibody injection therapy. This treatment requires regular injections once every 1-2 months. When receiving antibody injection therapy, the fear of having to inject directly into the eye and the cost of long-term repeated procedures are a great burden to patients. To overcome these problems, special sustained-release formulations using drug delivery systems are being developed. Since the release speed and release time of the drug can be controlled, the number of times the drug is administered can be drastically reduced. However, the implant (Ø 0.46×6.0mm), which is a sustained-release agent, is manufactured by mixing biodegradable resin (PLGA) and therapeutic agent in a ratio of 4:6, so it is very brittle and there is a high risk of implant damage during handling. In order to safely insert the implant into the eye, a transport device that can be driven with controlled force is required. Therefore, in this study, the lever operating force was measured and analyzed to determine the influence of factors according to the cross-sectional thickness and shape of the linkage produced through injection molding as well as the post-process.

Ablative Mechanism of SiC Coated Carbon/carbon Composites with Ratio of Oxygen to Fuel at Combusion Test (연소시험에서 산소와 연료 비에 따른 탄화규소로 코팅된 탄소/ 탄소 복합재의 삭마 메커니즘)

  • Zhang, Eun-Hee;Kim, Zeong-Baek;Joo, Hyeok-Jong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.227-233
    • /
    • 2007
  • Carbon/carbon (C/C) composites as unique materials possess exceptional thermal resistance with light weight, high stiffness, and strength even at high temperature. However, one serious obstacle for application of the C/C composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating has been employed to protect the composites from oxidation. This study explored combustion characteristics of 4-directional (4D) carbon/carbon composites using liquid fuel rocket engine to investigate ablative motion of the materials. C/C composites were made of coal tar pitch as a matrix precursor, and heat-treated at $2300^{\circ}C$. Throughout repeated densification process, the density of the material reached $1.903g/cm^3$. After machining 4D C/C composites, the nozzle surface was coated by a SiC layer by pack-cementation method to improve oxidation resistance. Erosion characteristics of SiC-coated C/C composites were measured as function of the ratio of oxygen to fuel. The morphological change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.

Effects of PTO gear face width on safety factors

  • Jang, Jeong-Hoon;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Chun, Won-Ki;Kim, Seon-Il;Kwon, Oh-Won;Kim, Chang-Won;Hong, Soon-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.650-655
    • /
    • 2016
  • Gears are components of transmission which transmit the power of an engine to a machine and offer numerous speed ratios, a compact structure, and high efficiency of power transmission. Gear train design in the automotive industry uses simulation software. However, PTO (Power Take-Off) gear design for agricultural applications uses the empirical method because of the wide range of load fluctuations in agricultural fields. The PTO is an important part of agricultural tractors which transmits the power to various tractor implements. Therefore, a simulation was essential to the optimal design of the PTO. When the PTO gear is optimally designed, there are many advantages such as low cost, reduced size, and light weight. In this study, we conducted the bending and contact safety factor simulation for the PTO gear of an agricultural tractor. The bending and contact safety factors were calculated on ISO 6336 : 2006 by decreasing the face widths of the PTO pinion and wheel gear from 18 mm at an interval of 1 mm. The safety factor of the PTO gear decreased as the face width decreased. The contact safety factors of the pinion and wheel gear were 1.45 and 1.53, respectively, when the face width was 18 mm. The simulation results showed that the face width of the PTO gear should be greater than 9 mm to maintain the bending and contact safety factors higher than 1. It would be possible to reduce the weight of the PTO gear for different uses and working conditions. This study suggests that the possibility of designing an optimal PTO gear decreases as its face width decreases.

Development and Validation of Urea- SCR Control-Oriented Model for NOX and NH3 Slip Reduction (NOX 및 NH3 Slip 저감을 위한 Urea-SCR 제어기반 모델 개발 및 검증)

  • Lee, Seung Geun;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • To satisfy stricter $NO_X$ emission regulations for light- and heavy-duty diesel vehicles, a control algorithm needs to be developed based on a selective catalytic reaction (SCR) dynamics model for chemical reactions. This paper presents the development and validation of a SCR dynamics model through test rig experiments and MATLAB simulations. A nonlinear state space model is proposed based on the mass conservation law of chemical reactions in the SCR dynamics model. Experiments were performed on a test rig to evaluate the effects of the $NO_X$ and $NH_3$ concentrations, gas temperature, and space velocity on the $NO_X$ conversion efficiency for the urea-SCR system. The parameter values of the proposed SCR model were identified using the experimental datasets. Finally, a control-oriented model for an SCR system was developed and validated from the experimental data in a MATLAB simulation. The results of this study should contribute toward developing a closed-loop control strategy for $NO_X$ and $NH_3$ slip reduction in the urea-SCR system for an actual engine test bench.

Study of Behavior Characteristics of Emulsified Fuels with Evaporative Field (증발장에서 에멀젼연료의 거동특성에 관한 연구)

  • Yeom, Jeong Kuk;Yoon, Jeong Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.237-243
    • /
    • 2015
  • In this study, the effects of the mixing ratio of emulsified fuel on the droplet evaporation and spray behavior characteristics were analyzed. A surfactant comprising span 80 and tween 80 mixed at a 9:1 ratio was used for the emulsified fuel. The fuel and surfactant were mixed at a ratio of 3:1 for the emulsified fuel. In addition, considering the mixing ratio of the surfactant, the mixing ratio of $H_2O_2$ in the emulsified fuel was set as EF (emulsified fuel)0, EF2, EF12, EF22, EF32, and EF42. To observe the evaporation characteristics, droplets of the emulsified fuel were dropped on a heating plate and observed using scattered light and a Schlieren system. In addition, to analyze the effect of the $H_2O_2$ mixing ratio, the behavior characteristics of the evaporative free spray were investigated in the mixing ratio range of EF0 to EF22 using a constant volume chamber with heaters. Consequentially, it was found that in the case of EF22, the free spray development of the emulsified fuel was faster than that of EF0 (diesel only) because of the promotion of the evaporation due to the phase change in the peroxide contained in the emulsion fuel.

Research for Performance Improvement of De-NOx of Cu-SCR Catalysts (Cu-SCR 촉매의 De-NOx 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2018
  • In order to meet the strict emission regulations for internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is gradually increasing. Diesel engines have high power, good fuel economy, and lower $CO_2$ emissions, and their market shares are increasing in commercial vehicles and passenger cars. However, NOx is generated in the localized high-temperature combustion regions, and particulate matter is formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for after-treatment of the exhaust gas to reduce NOx in diesel vehicles. This study aims to improve the NOx reduction performance of Cu SCR catalyst, which is widely used in light, medium, and heavy-duty diesel engines. The de-NOx performance of $5Cu-2ZrO_2$/93Zeolyst(Si/Al=13.7) SCR catalyst was about 5-50% higher than that of $5Cu-2ZrO_2$/93Zeolite(Si/Al=2.9) at catalyst temperatures of $300^{\circ}C$ or higher. The zeolite had lower metal dispersion than zeolyst, and the reaction rate of the catalyst decreased as the average particle size increased. The $10Cu-2ZrO_2$/88Zeolyst catalyst loaded with 10wt% Cu had the highest NOx conversion rate of 40% at $200^{\circ}C$ and about 65% at $350^{\circ}C$. The ion exchange rate of Cu ions increased with that of Al, the crystalline compound of zeolite, and the de-NOx performance was improved by 20-40% compared to other catalysts.

A Study on the Improvement of Aquaculture Security System to Insure the Lawful Evidence of Theft (도적행위의 법적증거확보를 위한 양식장 보안 시스템 개선에 관한 연구)

  • Yim, Jeong-Bin;Nam, Taek-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.55-63
    • /
    • 2007
  • The Group Digital Surveillance System for Fishery Safety and Security (GDSS-F2S) is to provide the target tracking information and the target identification information in order to secure an huge aquaculture farm-field from a thief. The two information, however, is not enough to indict the thief due to the lack of lawful evidences for the crime actions. To overcome this problem, we consider the target image information as one of solutions after discussion with the effective countermeasure tools for the crime actions with scenario-based analysis according to the geological feature of aquaculture farm-field. To capture the real-time image for the trespassing targets in the aquaculture farm-field area, we developed the image capture system which is consists of ultra sensitive CCD(Charge-Coupled Device) camera with 0.0001 Lux and supplementary devices. As results from the field tests for GDSS-F2S with image capture system, the high definite images of the vehicle number plate and shape, person's actions and features are obtainable not only day time but also very dark night without moon light. Thus it is cleary known that the improved GDSS-F2S with image capture system can provide much enough lawful evidences for the crime actions of targets.

  • PDF

Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency (고유진동수를 고려한 박판 구조물의 보강재 최적설계)

  • Lim O-Kaung;Jeong Seung-Hwan;Choi Eun-Ho;Kim Dae-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.195-202
    • /
    • 2006
  • Thin-walled structures are efficiently utilized an automobiles, aircraft, satellite and ship as well as needed light weight simultaneously. This paper presents new shape of automobile hood reinforcement that rotating parts as engine, transmission are protected by thin-walled structures. The automobile hood is concerned about the resonance occurs due to the frequency of the rotating parts. The hood must be designed by supporting the stiffness of design loads and considering the natural frequencies. Hence, it is sustained the stiffness and considered the vibration by resonance. It is deep related to ride. Therefore, the topology, shape and size optimization methods are used to design the automobile hood. Topology technique is applied to determine the layout of a structural component optimum size with maximized natural frequency by volume reduction. In this research, The optimal structure layout of an inner reinforcement of an automobile hood for the natural frequency of a designated mode is obtained by using topology optimization method. The optimum size and the optimum shape are determined by PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm.

A Numerical Study on the Optimization of Urea Solution Injection to Maximize Conversion Efficiency of NH3 (NH3 전환효율 극대화를 위한 Urea 인젝터의 분사 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jo, Nakwon;Oh, Sedoo;Jeong, Soojin;Park, Kyoungwoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • From now on, in order to meet more stringer diesel emission standard, diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filters. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the urea-SCR device for diesel passenger cars and light duty vehicles. That is because their operational characteristics are quite different from heavy duty vehicles, urea solution injection should be changed with other conditions. Therefore, the number and diameter of the nozzle, injection directions, mounting positions in front of the catalytic converter are important design factors. In this study, major design parameters concerning urea solution injection in front of SCR are optimized by using a CFD analysis and Taguchi method. The computational prediction of internal flow and spray characteristics in front of SCR was carried out by using STAR-CCM+7.06 code that used to evaluate $NH_3$ uniformity index($NH_3$ UI). The design parameters are optimized by using the $L_{16}$ orthogonal array and small-the-better characteristics of the Taguchi method. As a result, the optimal values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance(ANOVA). The compared maximize $NH_3$ UI and activation time($NH_3$ UI 0.82) are numerically confirmed that the optimal model provides better conversion efficiency of $NH_3$. In addition, we propose a method to minimize wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading. Consequently, the thickness reduction of fluid film in front of mixer is numerically confirmed through the mounting mixer and correcting injection direction by using the trial and error method.