• Title/Summary/Keyword: Light engine

Search Result 335, Processing Time 0.035 seconds

Powder Metallurgy for Light Weight and Ultra-Light Weight Materials

  • Kieback, B.;Stephani, G.;Weiβgarber, T.;Schubert, T.;Waag, U.;Bohm, A.;Anderson, O.;Gohler, H.;Reinfried, M.
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.383-389
    • /
    • 2003
  • As in other areas of materials technology, the tendency towards light weight constructions becomes more and more important also for powder metallurgy. The development is mainly driven by the automotive industry looking for mass reduction of vehicles as a major factor for fuel economy. Powder metallurgy has to offer a number of interesting areas including the development of sintered materials of light metals. PM aluminium alloys with improved properties are on the way to replace ferrous pars. For high temperature applications in the engine, titanium aluminide based materials offer a great potential, e.g. for exhaust valves. The PM route using elemental powders and reactions sintering is considered to be a cost effective way for net shape parts production. Furthermore it is expected that lower costs for titanium raw materials coming from metallurgical activities will offer new chances for sintered parts with titanium alloys. The field of cellular metals expands with the hollow sphere technique, that can provide materials of many metals and alloys with a great flexibility in structure modifications. These structures are expected to be used in improving the safety (crash absoption) and noise reduction in cars in the near future and offer great potential for many other applications.

Synthetic Data Generation with Unity 3D and Unreal Engine for Construction Hazard Scenarios: A Comparative Analysis

  • Aqsa Sabir;Rahat Hussain;Akeem Pedro;Mehrtash Soltani;Dongmin Lee;Chansik Park;Jae- Ho Pyeon
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1286-1288
    • /
    • 2024
  • The construction industry, known for its inherent risks and multiple hazards, necessitates effective solutions for hazard identification and mitigation [1]. To address this need, the implementation of machine learning models specializing in object detection has become increasingly important because this technological approach plays a crucial role in augmenting worker safety by proactively recognizing potential dangers on construction sites [2], [3]. However, the challenge in training these models lies in obtaining accurately labeled datasets, as conventional methods require labor-intensive labeling or costly measurements [4]. To circumvent these challenges, synthetic data generation (SDG) has emerged as a key method for creating realistic and diverse training scenarios [5], [6]. The paper reviews the evolution of synthetic data generation tools, highlighting the shift from earlier solutions like Synthpop and Data Synthesizer to advanced game engines[7]. Among the various gaming platforms, Unity 3D and Unreal Engine stand out due to their advanced capabilities in replicating realistic construction hazard environments [8], [9]. Comparing Unity 3D and Unreal Engine is crucial for evaluating their effectiveness in SDG, aiding developers in selecting the appropriate platform for their needs. For this purpose, this paper conducts a comparative analysis of both engines assessing their ability to create high-fidelity interactive environments. To thoroughly evaluate the suitability of these engines for generating synthetic data in construction site simulations, the focus relies on graphical realism, developer-friendliness, and user interaction capabilities. This evaluation considers these key aspects as they are essential for replicating realistic construction sites, ensuring both high visual fidelity and ease of use for developers. Firstly, graphical realism is crucial for training ML models to recognize the nuanced nature of construction environments. In this aspect, Unreal Engine stands out with its superior graphics quality compared to Unity 3D which typically considered to have less graphical prowess [10]. Secondly, developer-friendliness is vital for those generating synthetic data. Research indicates that Unity 3D is praised for its user-friendly interface and the use of C# scripting, which is widely used in educational settings, making it a popular choice for those new to game development or synthetic data generation. Whereas Unreal Engine, while offering powerful capabilities in terms of realistic graphics, is often viewed as more complex due to its use of C++ scripting and the blueprint system. While the blueprint system is a visual scripting tool that does not require traditional coding, it can be intricate and may present a steeper learning curve, especially for those without prior experience in game development [11]. Lastly, regarding user interaction capabilities, Unity 3D is known for its intuitive interface and versatility, particularly in VR/AR development for various skill levels. In contrast, Unreal Engine, with its advanced graphics and blueprint scripting, is better suited for creating high-end, immersive experiences [12]. Based on current insights, this comparative analysis underscores the user-friendly interface and adaptability of Unity 3D, featuring a built-in perception package that facilitates automatic labeling for SDG [13]. This functionality enhances accessibility and simplifies the SDG process for users. Conversely, Unreal Engine is distinguished by its advanced graphics and realistic rendering capabilities. It offers plugins like EasySynth (which does not provide automatic labeling) and NDDS for SDG [14], [15]. The development complexity associated with Unreal Engine presents challenges for novice users, whereas the more approachable platform of Unity 3D is advantageous for beginners. This research provides an in-depth review of the latest advancements in SDG, shedding light on potential future research and development directions. The study concludes that the integration of such game engines in ML model training markedly enhances hazard recognition and decision-making skills among construction professionals, thereby significantly advancing data acquisition for machine learning in construction safety monitoring.

A Study on Emission Inspection Method Improvement of Heavy-duty Diesel Vehicles (대형 경유자동차 배출가스 검사방법 개선에 관한 연구)

  • Jung, Youngdal;Yeo, Unseok;Yun, Yongan;Hong, Minsung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.165-173
    • /
    • 2014
  • The method of emission inspection for Heavy-duty diesel vehicles has been engine speed type Lug-down 3mode. This method could bring damage to decrepit vehicles under high speed and high load condition and it could not apply the driving pattern on the road. For these reasons, this study has started to create new emission inspection which is appropriate for Korea's road infrastructure. KD 147 would be applied to light-duty diesel vehicles from july 2010 after model operations. Therefore, this study has investigated new emission inspection system for heavy-duty diesel vehicles, except for light-duty diesel vehicles. In consideration of domestic conditions to meet the new load test method in this study, the Lug-down3 mode vehicle speed method was developed for the first time in korea.

A study for rolling reduction of fishing boat by utilizing u-type fish-hold (낚시 어선의 U형 어창을 이용한 횡요 감쇠에 관한 연구)

  • Choi, Chan-Moon;Ahn, Jang-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.2
    • /
    • pp.148-156
    • /
    • 2008
  • In this study it will be discussed how to solve the problem of discomfort from rolling motion on the fishing boats. Most discomfort is caused by the short cycle of rolling due to the light weight of the boats. The light weight is due to the FRP material which dries a boat. A way to improve the feeling of boarding by using fish hold was researched. The experiment was done on experimental fishing boat made by FRP in Jeju. An existing fish hold was designed and manufactured through the rolling test and that was used for a marine experiment. The rolling condition of the U-tank boat ideally designed was compared to that of an existing fishing boat using the same conditions. The experiments were carried out two times on the stop engine in the outward Sehwa fishing port, which the experimental data had analysed for effects of rolling reduction to compare the U - tank with the of exiting fish hold. The results were confirmed that the U-boat tank in the roll period and GoM were more safe than the existing fish hold and the average amplitude and significant of rolling angles were decreased relatively.

A Study on the Characteristics of Smoke Emissions from Heavy Duty Diesel Vehicles Using a Chassis Dynamometer (차대동력계를 이용한 대형 디젤 차량의 매연 배출 특성 연구)

  • Jin, Kwang-Suk;Lee, Choong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.1-10
    • /
    • 2009
  • The characteristics of smoke emissions from diesel heavy duty vehicles which weigh over 5.5 tons was investigated by driving the vehicles with both the Lugdown 3 modes in the chassis dynamometer and tree accelerating mode under no load. The vehicles include commercial vehicles such as bus, microbus, trucks and specialized vehicles, etc. The total numbers of the vehicles tested were 200. The light extinction method was used to measure the smoke emissions from the vehicles tail pipe. The values of the smoke emissions in the tree accelerating mode showed $0{\sim}20%$ band nearly independent of both the mileage and year of production of the tested vehicles, while those in the Lugdown 3 modes showed $0{\sim}99%$ of wide band. The correlation coefficients between the values of the smoke emissions with both the Lugdown 3 modes and the free acceleration mode were 0.12, 0.08, 0.12, respectively. The inspection with Lugdown 3 modes is better one than that with tree acceleration from the point of exact inspection of the diesel vehicles' smoke emission.

A New Switched Flux Machine Employing Alternate Circumferential and Radial Flux (AlCiRaF) Permanent Magnet for Light Weight EV

  • Jenal, Mahyuzie;Sulaiman, Erwan;Kumar, Rajesh
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.537-543
    • /
    • 2016
  • Currently, an interest in electric vehicles (EVs) exhibited by automakers, government agencies and customers make it as more attractive research. This is due to carbon dioxide emitted by conventional combustion engine that worsens the greenhouse effect nowadays. Since electric motors are the core of EVs, it is a pressing need for researchers to develop advanced electric motors. As one of the candidates, switched flux machine (SFM) is initiated in order to cope with the requirement. This paper proposes a new alternate circumferential and radial flux (AlCiRaF) of permanent magnet switched flux machines (PMSFM) for light weight electric vehicles. Firstly, AlCiRaF PMSFM is compared with the conventional PMSFM based on some design restrictions and specifications. Then the design refinements techniques are conducted by using deterministic optimization method in order to improve preliminary performance of machine. Finally the optimized machine design has achieved maximum torque and power of 47.43 Nm and 12.85 kW, respectively, slightly better than that of conventional PMSFM.

Analysis and Separation of Constituent Materials of Old Car by Shredding Process (폐자동차 파쇄를 통한 주요구성물질의 분리 및 분석평가)

  • Lee Hwa-Young;Oh Jong-Kee;Kim Sung-Gyu
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.11-16
    • /
    • 2002
  • Analysis and separation of constituent materials of old car have been performed by using the industrial shredding line. For this aim, three old cars made by domestic automobile manufacturers, Sonata II, Sephia and Prince were chosen and delivered in pressed form without engine, tires and doors, etc. Shredding line was substantially composed of pre- and main-shredder. cyclone, magnetic separation, eddy current separation and man-power separation. From the separation of shredder products, iron scrap was observed to be the major material of old car accounting for 60.1 % of total weight and non-ferrous metals involving Al, Cu and Zn, etc. were about 2%. Light fluff, about 90% of total fluff product, was comprised with plastic, fiber and sponge, etc. and the fraction of 5 cm undersize in light fluff was 70.5%. In case of heavy fluff, however. rubber and plastic were found to be the major constituent materials of it. Among the constituent materials of fluff, plastic showed the highest calorific value, more than 10,000 cal/gr and leather and rubber showed relatively high chlorine content, 10.3 and 2.55 wt%, respectively.

A study on the way to improve abnormal noise by applying vehicle fitting type generator (탑재형 발전기 적용에 따른 이상소음 개선 방안에 관한 연구)

  • Kim, Seon-Jin;Kim, Sung-Gon;Yun, Seong-Ho;Shin, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.266-274
    • /
    • 2020
  • This paper reports a means of improving the abnormal noise of light tactical vehicles (LTVs) by applying a vehicle fitting type generator (hereinafter called generator). LTVs are classified as having generators, and there are no differences in the noise level. On the other hand, quality improvement was performed in response to unpleasant noise felt by the user (hereinafter called abnormal noise) during vehicle operation. To improve the quality, the generator mounting structure and the phenomenon of the vehicle in the problem were identified. Through this, it was confirmed that the noise caused by the generator installation was the rattle noise. Rattle noise at the engine driving system is normally caused by the transfer of irregular torque generated by the engine power stroke and the backlash by the spline-serration fitting structure between the engine coupler and rotor assembly in a generator. Therefore, this study established an improvement plan to apply a damper coupler to solve the cause of the abnormal noise. Regarding the improved establishment method, the improvement effect was confirmed from the influence of the irregular torque of the engine, noise level, dynamic characteristics analysis, and the endurance test of the parts.

Study on the Exhaust Flow Analysis of Unsteady Flow with Various Exhaust Manifolds and Catalyst Geometries (배기계 형상에 따른 비정상 유동에서의 배기매니폴드와 촉매 입구 유동현상 해석)

  • Lee, Jae-Ho;Kim, Dae-Woo;Kwak, Ho-Chul;Park, Sim-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.217-222
    • /
    • 2004
  • In recent year, as the current and future emission regulations go stringent, the research of exhaust manifold and CCC has become the subject of increasing interest and attention. This study is concerned with the systematic approach to improve catalyst flow uniformity and light-off behavior through the basic understanding of exhaust flow characteristics. Computational approach to the unsteady compressible flow for exhaust manifold of 4-1 type and 4-2-1 type and CCC system of a 4-cylinder DOHC gasoline engine was performed to investigate the flow distribution of exhaust gases. In this study, through calculation, the effects of geometric configuration of exhaust manifold on flow structure and its maldistribution in monolith were mainly investigated to understand the exhaust flow patterns in terms of flow uniformity. Based on the design guidance resulting from this fundamental study, the flow uniformity of 4-2-1 type exhaust manifold demonstrated the more improved exhaust characteristics than that of the 4-1 type one.

  • PDF

Dynamic Modeling and Control of Electronic Timer in Fuel Injection System of Light-Duty Diesel Engines (소형디젤엔진용 연료분사장치 전자타이머의 동적모델링과 제어)

  • 한도영;김증열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.196-204
    • /
    • 1996
  • The simplified dynamic models of the timer assembly in the diesel engine fuel injection system were developed. The first order system with time delay was assumed and the various parameters in this model were obtained by experimental data. These simplified dynamic models were used for the development of control algorithm of the injection timing control system. The PI control algorithm was modified to include the anti-windup property and disturbance compensation. This modified PI control algorithm was used for the control of the injection timing. Improved control accuracy and reduced control efforts were observed.

  • PDF