• 제목/요약/키워드: Light emitting device

검색결과 854건 처리시간 0.028초

Recent Progress in the Development of Small Organic Molecules for White Organic Light Emitting Devices

  • Raja, Inam ul Haq;Jung, Se-Jin;Lee, So-Ha
    • 한국응용과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.91-106
    • /
    • 2008
  • Development of white light emitting materials has been an interesting area for scientists and scientists have developed many organic, polymer and inorganic materials for white electroluminescent devices. Among them, single component small molecules gave best results in terms of efficiency, simplicity of device fabrication, and CIE values. Therefore, this review covers detailed discussion about syntheses of small compounds used in white organic light emitting devices until 2007.

SiNx 박막에 의한 OLED 소자의 보호막 특성 (Passivation Properties of SiNx Thin Film for OLEO Device)

  • 주성후
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.758-763
    • /
    • 2006
  • We has been studied the thin film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation properties of the passivation layer materials, we have carried out the fabrication of green light emitting diodes with ultra violet(UV) light absorbing polymer resin, $SiO_2,\;and\;SiN_x$, respectively. From the measurement results of shrinkage properties according to the exposure time to the atmosphere, we found that $SiN_x$ thin film is the best material for passivation layer. We have investigated the emission efficiency and life time of OLED device using the package structure of $OLED/SiN_x/polymer$ resin/Al/polymer resin. The emission efficiency of this OLED device was 13 lm/W and life time was about 2,000 hours, which reach 95 % of the performance for the OLED encapsulated with metal.

페릴렌과 트리아진기를 측쇄로 가지는 청색 발광 공중합체의 전기발광 특성 (Electroluminescence Characteristics of Blue Light Emitting Copolymer Containing Perylene and Triazine Moieties in the Side Chain)

  • 이창호;류승훈;오환술;오세용
    • 폴리머
    • /
    • 제28권5호
    • /
    • pp.367-373
    • /
    • 2004
  • 발광체로 페릴렌기와 전자 전달체로 트리아진기를 측쇄로 가지는 새로운 비공액계 청색 발광 공중 합체를 합성하였다. 제조한 공중합체는 클로로벤젠, THF 클로로포름, 벤젠과 같은 일반 유기 용매에 매우 잘 녹았다. 전도성 투명 전극 (ITO)/공중합체 /알루미늄으로 구성된 단층형 유기 발광 소자는 공중합체에서 트리아진의 함유량이 $30\%$일 때 캐리어 균형이 잘 맞았고 최고의 외부 양자 효율 ($0.003\%$)을 나타내었다. 특히 위에서 제작한 유기 발광 소자는 페릴렌 발광체에 상응하는 청색 발광 (479 nm)을 나타냈다. 구동 전압은 5V로 매우 낮았고, 색 좌표는 X 값이 0.16, Y 값이 0.17이었다.

교류 전압 구동에 의한 유기 발광 소자의 발광 특성 연구 (Light-Emission Characteristics of Organic Light-Emitting Diodes Driven by Alternating Current)

  • 권오태;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제29권10호
    • /
    • pp.625-629
    • /
    • 2016
  • Electrical and optical properties of the AC voltage driven organic light-emitting diodes were investigated by measuring the electroluminescence of the device. Device structure of ITO(170 nm)/TPD(40 nm)/Alq3(60 nm)/LiF(0.5 nm)/Al(100 nm) was manufactured using a thermal evaporation. Sinusoidal and square-type AC voltage was applied to the device using a function generator. Amplitude of the applied voltage was 9.0 V, and a frequency was varied from 50 Hz to 50 kHz. Electroluminescence out of the device was measured in a Si photodetector simultaneously with the applied voltage together. An intensity and a delayed residual luminescence from the device were depended on the frequency of the sinusoidal voltage. It is thought to be due to a contribution of the capacitive nature in the equivalent circuit of the device. An electron mobility was estimated using a time constant obtained from the luminescence of the device driven by the square-type AC voltage.

플렉시블 무기EL 색변환 백색 발광 소자 제작 및 특성평가 (The Fabrication and Characteristics of White Emission Using CCM on Flexible Substrate)

  • 김기령;안성일;금정훈;이흥렬;임태홍;이성의
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.411-412
    • /
    • 2007
  • EL (electro luminescent) is generally studied as a large size plane light emitting device and flexible light source because of it's simple manufacturing process. In this experiment, we manufactured flexible white emitting light source using Ni-foil with blue phosphor and color change materials. With increasing the thickness of color change material, the luminance of white emission is increased and the color coordinate of white color was shifted to pure white of (0.317,0.328) by strong emission of color change materials excited by blue excitation spectra. Also the luminance level was 30% higher in white emitting light device than blue only light source.

  • PDF

Rubrene 도핑층을 이용한 백색 OLEDs의 전기 및 광학적 특성 (Electrical and Optical Characteristics of White OLEDs with a Rubrene doped Layer)

  • 문대규;이찬재;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.53-56
    • /
    • 2007
  • We have fabricated organic white light emitting diodes by mixing two colors from very thin rubrene doped and non-doped DPVBi layers. The device structure was ITO/2-TNATA(15 nm)/${\alpha}$-NPD(35 nm)/DPVBi:rubrene(5 nm)/DPVBi(30 nm)/$Alq_{3}(5\;nm)$/BCP(5 nm)/LiF(0.5 nm)/Al(150 nm). The yellow-emitting rubrene of 0.7 wt % was doped into the blue-emitting DPVBi host for the white light. CIE coordinate of the device was (0.31, 0.33) at 8 V. The color coordinates were stable at wide ranges of driving voltages. The luminance was over $1,000\;cd/m^{2}$ at 8 V and increases to $14,500\;cd/m^{2}$ at 12 V. The maximum current efficiency of the device was 8.2 cd/A at $200\;cd/m^{2}$.

Optical Effect due to Thickness Variation of Electron Injection Layer in Organic Light-emitting Diodes

  • Lee, Young-Hwan;Lee, Kang-Won;Yi, Keon-Young;Hong, Jin-Woong;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권1호
    • /
    • pp.20-23
    • /
    • 2008
  • Organic light-emitting diodes (OLEDs) are attractive because of possible application in display with low-operating voltage, low-power consumption, self-emission and capability of multicolor emission by the selection of emissive materials. To investigated the optical effects, we studied the electrical and optical characteristics due to thickness variation of electron injection materials LiF on organic light-emitting diodes in the ITO (indium-tin-oxide)/N,N'-diphenyl-N, N'-bis(3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline) aluminum $(Alq_3)/LiF$ layer/Al device. We maintained the thicknesses of TPD and $Alq_3$ layers at 40 nm and 60 nm, respectively. The deposition rates of TPD and $Alq_3$ were in the $1.5{\AA}/s$ under a base pressure of $5{\times}10^{-6}$ Torr. It was found that luminance and luminous efficiency of the device with 0.7 nm LiF layer improve 25 times and 7 times than the device without the LiF layer, respectively.

변조 광전류 측정법을 이용하여 유기 발광 소자에서 $Li_2O$ 두께 변화에 따른 내장 전압 (Built-in voltage depending on $Li_2O$ layer thickness in organic light-emitting diodes from the measurement of modulated photocurrent)

  • 이은혜;윤희명;김태완;민항기;장경욱;정동회;오용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.31-32
    • /
    • 2007
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. An ITO was used as an anode, and $Li_2O$/Al was used as a cathode. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photocurrent is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. It was found that for 0.5nm thick $Li_2O$ layer built-in voltage is the higher than the others. It indicates that a very thin alkaline metal compound $Li_2O$ lowers an electron barrier height.

  • PDF

전자주입층(LiF와 $Li_2O$)을 사용한 유기 발광 소자의 특성 (CHARACTERISTICS OF ORGANIC LIGHT-EMITTING DIODES FOR THE DEVICES WITH ELECTRON INJECTION LAYER (LIF AND $LI_2O$))

  • 신은철;안희철;이호식;송민종;이원재;한원근;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.439-440
    • /
    • 2007
  • To enhance the electron injection from the cathode of organic light-emitting diodes (OLEDs), We have studied characteristics of device that electron injection layer(EIL) is inserted between emissive layer and cathode. We fabricated bi-layer cathode $Li_2O$(x nm)/Al(100nm) and LiF(x nm)/Al(100nm) using LiF and $Li_2O$ as an electron injection layer. We analyzed the current efficiency, luminance efficiency, and external quantum efficiency of the device by varying the thickness of $Li_2O$ and LiF to be 0.5nm, 1nm, or 3nm. Using the EIL, we have obtained the efficiency of 7cd/A and the luminance of $20,000cd/m^2$. There is an improvement of efficiency by more than 3 times than the device without the $Li_2O$ layer.

  • PDF

Ir 착화합물을 이용한 유기발광소자의 특성연구 (The study on the characteristics of organic light emitting devices using Ir)

  • 김준호;표상우;정래영;하윤경;김영관;김정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.214-217
    • /
    • 2002
  • The internal quantum efficiency of organic light emitting devices(OLEDs) using fluorescent organic materials is limited within 25% because of the triplet excitons which can hardly emit light. So there has been considerable interest in finding ways to obtain light emission from triplet excitons. One approach has been to add phosphorescent compounds to one of the layers in OLEDs. Then triplet excitons can transfer to these phosphorescent molecules and emit light. In this study, multilayer OLEDs with phosphorescent emitter, Iridium complexes were prepared. The devices with a structure of ITO/TPD/Ir complex doped in the host material/Alq3/Li:Al/Al were fabricated, and its electrical and optical characteristics were studied. Using various Ir complexes and the host materials, we fabricated several devices and investigated the device characteristics.

  • PDF