• Title/Summary/Keyword: Light emitting device

Search Result 854, Processing Time 0.036 seconds

The Fabrication and Characteristic Analysis of Single-Layer White Organic Light Emitting Devices (단일층 백색유기발광소자의 제작 및 특성분석)

  • Kim, Jung-Yeoun;Kang, Seong-Jong;Roh, Byeong-Gyu;Kang, Myung-Koo;Oh, Hwan-Sool
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.11-16
    • /
    • 2002
  • In this paper, single-layer white organic light emitting device was fabricated on ITO glass substrate using PVK as host, Bu-PBD as electron transport layer, Nile Red, Coumarin 6, TPB as red, green, blue color fluorescent dyes. The red, green, blue organic light emitting devices were fabricated respectively. After the characteristic analysis of each color device, the white organic light emitting device was fabricated with optimized condition of each color device by spin coating method. we obtained white emission CIE coordination of (0.32, 0.34) and luminescence of 785cd/$m^2$ at driving voltage of 20V with condition of PVK(70wt%), Bu-PBD(30wt%), Nile Red(0.015mol%), Coumarin 6(0.04mol%), TPB(3mol%). 

Organic Electroluminescence Device using Dye doped Emitting (색소 doped 유기EL 소자에 의한 고효율화)

  • 임장순;강성종;노병규;오환술
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.261-264
    • /
    • 2000
  • Organic light emitting diodes(OLEDs) have been expected to find an application as a new type of display since C. W. Tang and VanSlyke first reported on high performance OLEDs. This paper has been stuied a green organic EL device using dye doped emitting layer such as C6(Coumarin 6). In the Alq-based e]ectroluminescence diodes, we applied highly fluorescent molecular(Coumarin 6) and obtained enhancement in the electroluminescence efficiency.

  • PDF

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

Electroluminescence characteristics of organic light-emitting diodes with TPD doped PVK as the hole transport layer

  • Shin, Y.C.;Song, J.H.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1404-1407
    • /
    • 2005
  • We have fabricated organic light-emitting diodes using poly(N-vinylcarbazole)(PVK) doped with N,N'- diphenyl-N,N'-bis(3-methylphenyl)-[l,l'-biphenyl]- 4,4/-diamine (TPD) as the hole transport layer. TPD molecules act as the trapping sites in PVK and reduce the hole mobility, which can enhance the electronhole balance in the emitting layer, resulting in the enhanced device performance. We have found the optimum ratio of TPD to PVK for the EL efficiency.

  • PDF

Dynamic Response of Organic Right-emitting Diodes in ITO/Alq3 Structure

  • Lee, Dong-Gyu;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.97-100
    • /
    • 2005
  • Dynamic response of organic light-emitting diodes were analyzed in $ITO/Alq_3$(100 nm)/Al device structure with a variation of voltage an frequency. At low frequency region, complex impedance is mostly governed by resistive component, and at high frequency region by capacitive component. Also, we have evaluated resistance, capacitance and permittivity of devices.

Highly efficient blue phosphorescent organic light-emitting device using new host materials

  • Seo, Yu-Seok;Kim, Tae-Yong;Moon, Dae-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.817-819
    • /
    • 2009
  • We have developed highly efficient blue phosphorescent organic light-emitting devices (PHOLEDs) with simplified architectures using new host materials. The Blue PHOLED with new host:FIrpic emitting layer exhibits a maximum luminance efficiency of 34 cd/A and a low operating voltage 5 V at a high luminance of 1212 cd/$m^2$.

  • PDF

Study on Color Shifting Mechanism for Organic Light Emitting Diode with Red Dopant-doped Emitting Layer (적색 도펀트가 도핑된 발광층을 갖는 유기발광다이오드에서의 컬러 시프트 메커니즘 연구)

  • Lee, Ho-Nyeon;Oh, Tae-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4590-4599
    • /
    • 2011
  • The Color shift phenomenon is becoming a major degradation factor of the emitting color purity in the organic emitting diodes which is generating a plurality of colors. In this study, the basic structure of organic light emitting diode device is comprised of ITO/${\alpha}$-NPD/$Alq_3$:DCJTB[wt%]/$Alq_3$/Mg:Ag, we have carry out numerical simulation of the electric-optical characteristics in organic light emitting diode device to estimate the mechanism of color shift phenomenon. We have investigated the causes of the color shift through the change of DCJTB doping concentration ratio. As the result, we have confirmed that the changes of the recombination rate which generated by trapped electrons and holes is one of the major factors for the color shift phenomenon.

Enhancement of outcoupling efficiency of OLEDs by using nanoimprinted polymer nanostructures

  • Jeon, So-Hee;Kang, Jae-Wook;Park, Hyung-Dol;Shim, Jong-Youp;Jeong, Jun-Ho;Kim, Se-Heon;Youn, Jae-R.;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.521-522
    • /
    • 2008
  • An etch-less simple method was developed to fabricate two-dimensional nanostructures on glass substrate directly by using UV curable polymer resin and UV nanoimprint lithography in order to improve output coupling efficiency of OLEDs. OLEDs integrated on nanoimprinted substrates enhanced electro-luminance intensity by up to 50% compared with the conventional device.

  • PDF

Dielectric Properties depending on Bias Voltage in Organic Light-emitting Diodes (유기 발광 소자의 바이어스 전압에 따른 유전 특성)

  • Oh, Yong-Cheul;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1038-1042
    • /
    • 2005
  • We have investigated dielectric properties depending on bias voltage in organic light-emitting diodes using 8-hydroxyquinoline aluminum $(Alq_3)$ as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using impedance of characteristics. Impedance characteristics was measured complex impedance Z and phase $\theta$ in the frequency range of 40 Hz to $10^8$ Hz. We obtained complex electrical conductivity, dielectric constant, and loss tangent $(tan\delta)$ of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

Effects of Buffer Layer in Organic Light-Emitting Diodes Using Poly(N-vinylcarbazole)

  • Chung, Dong-Hoe;Hong, Jin-Woong;Kim, Tae-Wan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.173-176
    • /
    • 2003
  • We have seen the effects of buffer layer in organic light-emitting diodes using poly(N-vinylcarbazole)(PVK). Polymer PVK buffer layer was made using static spin-casting method. Two device structures were made; one is ITO/TPD/Alq3/Al as a reference and the other is ITO/PVK/TPD/Alq3/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage characteristics, luminance-voltage characteristics and luminous efficiency were measured with a variation of spin-casting speeds. We have obtained an improvement of luminous efficiency by a factor of two and half when the PVK buffer layer is used.