• Title/Summary/Keyword: Light absorption

Search Result 1,205, Processing Time 0.023 seconds

ENERGY ABSORPTION CHARACTERISTICS IN SQUARE OR CIRCULAR SHAPED ALUMINUM/CFRP COMPOUND TUBES UNDER AXIAL COMPRESSION

  • CHA C. S.;LEE K. S.;CHUNG J. O.;MIN H. K.;PYEON S. B.;YANG I. Y.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.501-506
    • /
    • 2005
  • With the respective collapse characteristics of aluminum and CFRP (Carbon Fiber Reinforced Plastics) tubes in mind, axial collapse tests were performed for aluminum/CFRP compound tubes, which are composed of square or circular shaped aluminum tubes wrapped with CFRP outside. In this study, the collapse modes and the energy absorption characteristics were analyzed for aluminum/CFRP compound tubes which have different fiber orientation angle of CFRP. Fracture modes in the aluminum/CFRP compound tubes were rather stable than those in the CFRP tubes alone, probably due to the ductile nature of the inner aluminum tubes. The absorbed energy per unit volume of the aluminum or the aluminum/CFRP compound tubes was higher than that of CFRP tubes. Meanwhile, the absorbed energy per unit mass, for the light-weight design aspect was higher in the aluminum/CFRP compound tubes than in the aluminum tubes or the CFRP tubes. The energy absorption turned out to be higher in circular tubes than in square tubes. Beside the collapse modes and the energy absorption characteristics were influenced by the orientation angle, and the compound tubes took the most effective energy absorption when the fiber orientation angle of CFRP was 90 degrees.

Impact Collapse Behavior of Hybrid Circular Thin-walled Member by Stacking Condition (적층조건에 따른 혼성 원형 박육부재의 충격압궤거동)

  • Lee, Kil-Sung;Park, Eu-Ddeum;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.235-240
    • /
    • 2010
  • The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, energy absorbing members should be absorbed with collision energy sufficiently. But vehicle structure must be light weight for the environmentally-friendly aspect, in order to improve fuel efficiency and to reduce tail gas emission. Therefore, the light weight of vehicle must be achieved in a status of securing safety of crash. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) is representative one among the light-weight materials. In this study, impact collapse behavior of circular hybrid thin-walled member is evaluated. The hybrid members are manufactured by wrapping CFRP prepreg sheets outside the aluminum circular members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties change with its stacking condition, special attention is given to the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member. Collapse mode and energy absorption capability of the hybrid thin-walled member are analyzed with change of the fiber orientation angle and interface number.

Photo-induced inter-protein interaction changes in the time domain; a blue light sensor protein PixD

  • Terazima, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • For understanding molecular mechanisms of photochemical reactions, in particular reactions of proteins with biological functions, it is important to elucidate both the initial reactions from the photoexcited states and the series of subsequent chemical reactions, e.g., conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), and inter-protein interactions (oligomer formation, dissociation reactions). Although time-resolved detection of such dynamics is essential, these dynamics have been very difficult to track by traditional spectroscopic techniques. Here, relatively new approaches for probing the dynamics of protein photochemical reactions using time-resolved transient grating (TG) are reviewed. By using this method, a variety of spectrally silent dynamics can be detected and such data provide a valuable description about the reaction scheme. Herein, a blue light sensor protein TePixD is the exemplar. The initial photochemistry for TePixD occurs around the chromophore and is detected readily by light absorption, but subsequent reactions are spectrally silent. The TG experiments revealed conformational changes and changes in inter-protein interactions, which are essential for TePixD function. The TG experiments also showed the importance of fluctuations of the intermediates as the driving force of the reaction. This technique is complementary to optical absorption detection methods. The TG signal contains a variety of unique information, which is difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review.

Synthesis of solar light responsive ZnO/TaON photocatalysts and their photocatalytic activity (태양광 응답형 ZnO/TaON 나노 복합체의 제조 및 광촉매 특성 평가)

  • Kim, Tae-Ho;Jo, Yong-Hyeon;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.256-257
    • /
    • 2014
  • The effects of the preparation conditions of ZnO-modified TaON on the photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light were investigated. The ZnO/TaON nanocomposite were prepared by loading particulate $Ta_2O_5$ with ZnO using different ZnO contents, followed by thermal nitridation at 1123 K for 5 h under $NH_3$ flow (20 ml min.1). The asprepared samples were characterized by XRD, UV-Vis-DRS, and SEM-EDX. The results revealed that the band gap energy absorption edge of as prepared nanocomposite samples was shifted to a longer wavelength as compared to ZnO and $Ta_2O_5$, and the 60 wt% ZnO/TaON nanocomposite exhibited the highest percentage (99.2 %) of degradation of Rh. B and the highest reaction rate constant ($0.0137min^{-1}$) in 4 h which could be attributed to the enhanced absorption of the ZnO/TaON nanocomposite photocatalyst. Hence, these results suggest that the ZnO/TaON nanocomposite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial ZnO, $Ta_2O_5$, and TaON.

  • PDF

Synthesis and Photocatalytic Activity of TiO2/BiVO4 Layered Films under Visible Light Irradiation

  • Li, Xuan;Zhang, Zhuo;Zhang, Feng-Jun;Liu, Jin;Ye, Jie;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.665-669
    • /
    • 2016
  • $TiO_2/BiVO_4$ layered films were prepared by sol-gel and spin coating methods. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Uv-vis spectroscopy were used to investigate the crystal structure, morphology and ultraviolet-visible absorption of the $TiO_2/BiVO_4$ films. The photocatalytic activity of the prepared films was inspected according to the degradation of methylene blue. The results show that the prepared films present a net chain structure; the absorption band edge had obvious red shift. The degradation of the methylene blue solution was about 80% after 300 mins using $TiO_2/BiVO_4$ layered films under visible light, which was stronger than when using only pure $TiO_2$ film and $BiVO_4$ film.

The Syntheses and Application of NIR Dyes Based On Light Absorbing Properties

  • Park, Soo-Youl;Shin, Seung-Rim;Shin, Joung-Il;An, Kyoung-Lyong;Lee, Sang-Oh;Jun, Kun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.49-50
    • /
    • 2010
  • The near-infrared absorbing donor-acceptor chromophores have been investigated by varying the electron donating and accepting molecular moiety. A series of near-infrared absorbing chromophores were offered narrow and intense absorption band in a various organic solvents. The dyes synthesised were, however, strongly bathochromic shift which extended well into the near-infrared region. The functional uses of dyes are vast in number, and it is convenient to classify them in some way. In all cases, it is the $\Pi$-chromophore that plays a major role in the functional application. "Light absorption" is of course the most commonly used property of a dye chromophore, and it can be employed directly, e.g. in light filters and optical data recording, or it can be used to drive further functional processes, e.g. fluorescence, photochromism, photosensitization.

  • PDF

Promoting Photoelectrochemical Performance Through the Modulation of MoS2 Morphology (MoS2의 형상변조를 통한 광전기화학 성능 촉진)

  • Seo, Dong-Bum;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2022
  • The development of advanced materials to improve the efficiency of photoelectrochemical (PEC) water splitting paves the way for widespread renewable energy technologies. Efficient photoanodes with strong absorbance in visible light increases the effectiveness of solar energy conversion systems. MoS2 in a two-dimensional semiconductor that has excellent absorption performance in visible light and high catalytic activity, showing considerable potential as an agent of PEC water splitting. In this study, we successfully modulated the MoS2 morphology on indium tin oxide substrate by using the metalorganic chemical vapor deposition method, and applied the PEC application. The PEC photocurrent of the vertically grown MoS2 nanosheet structure significantly increased relative to that of MoS2 nanoparticles because of the efficient transfer of charge carriers and high-density active sites. The enhanced photocurrent was attributed to the efficient charge separation and improved light absorption of the MoS2 nanosheet structure. Meanwhile, the photocurrent property of thick nanosheets decreased because of the limit imposed by the diffusion lengths of carriers. This study proposes a valuable photoelectrode design with suitable nanosheet morphology for efficient PEC water splitting.

MAGNETIC INTERACTION AND X-RAY ABSORPTION OF THE MAGNETIC COMPACT STARS

  • Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.113-122
    • /
    • 1993
  • Using a simple analytic model based on the MHD stability arguments we obtain the size of the magnetosphere for the magnetic compact stars. We assume the ordered, field-aligned flow in the magnetosphere and estimate the wellknown Alfven radius. The dependence of the X-ray absorption in the magnetic funnel on the size of this radius is further considered. We show that such a determination of the magnetic interaction radius can be applied to the reconstruction of X-ray light curves of the magnetic binary stars.

  • PDF

The energy absorption characteristics of thin-walled members for the use of light-weight vehicles (경량화용 차체구조 박육부재의 에너지 흡수특성)

  • 김정호;윤규종;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.33-43
    • /
    • 1996
  • In this paper, collapse test of thin-walled structures, which are widely used in the vehicle members is carried out to observe the dependence of cross-sectional forms and materials on the absorbed energy in the viewpoint of crashworthiness. Also, specimens consist of two kinds (Al, CFRP) with various thickness. Comparisons of circular specimens are made to find characteristics of the different specimens on the absorption ability according to specimen thickness and materials.

  • PDF

Impact Energy Absorption Characteristics of the Extruded Aluminum Sections for Rail Vehicles (철도차량 알루미늄 압출재의 충격에너지 흡수 특성)

  • 허승진;정영섭;양승국;구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.155-162
    • /
    • 1999
  • Extruded aluminum sections are used to the light construction of the rall vehicles structures However, the research works on the crashworthy design of the extruded aluminum sections are not published sufficiently in this paper, the impact energy absorption characteristics of extruded aluminum sections are investigated by crash simulation and test The optimized energy absorbing studies are also performed based on the selected design parameter variations of the sectional shapes and the dimensional ratios.

  • PDF