• 제목/요약/키워드: Light Water Reactors

검색결과 110건 처리시간 0.029초

Design and Structural Safety Evaluation of Transfer Cask for Dry Storage System of PWR Spent Nuclear Fuel

  • Taehyung Na;Youngoh Lee;Taehyeon Kim;Yongdeog Kim
    • 방사성폐기물학회지
    • /
    • 제21권4호
    • /
    • pp.503-516
    • /
    • 2023
  • A transfer cask serves as the container for transporting and handling canisters loaded with spent nuclear fuels from light water reactors. This study focuses on a cylindrical transfer cask, standing at 5,300 mm with an external diameter of 2,170 mm, featuring impact limiters on the top and bottom sides. The base of the cask body has an openable/closable lid for loading canisters with storage modules. The transfer cask houses a canister containing spent nuclear fuels from lightweight reactors, serving as the confinement boundary while the cask itself lacks the confinement structure. The objective of this study was to conduct a structural analysis evaluation of the transfer cask, currently under development in Korea, ensuring its safety. This evaluation encompasses analyses of loads under normal, off-normal, and accident conditions, adhering to NUREG-2215. Structural integrity was assessed by comparing combined results for each load against stress limits. The results confirm that the transfer cask meets stress limits across normal, off-normal, and accident conditions, establishing its structural safety.

Surrogate based model calibration for pressurized water reactor physics calculations

  • Khuwaileh, Bassam A.;Turinsky, Paul J.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1219-1225
    • /
    • 2017
  • In this work, a scalable algorithm for model calibration in nuclear engineering applications is presented and tested. The algorithm relies on the construction of surrogate models to replace the original model within the region of interest. These surrogate models can be constructed efficiently via reduced order modeling and subspace analysis. Once constructed, these surrogate models can be used to perform computationally expensive mathematical analyses. This work proposes a surrogate based model calibration algorithm. The proposed algorithm is used to calibrate various neutronics and thermal-hydraulics parameters. The virtual environment for reactor applications-core simulator (VERA-CS) is used to simulate a three-dimensional core depletion problem. The proposed algorithm is then used to construct a reduced order model (a surrogate) which is then used in a Bayesian approach to calibrate the neutronics and thermal-hydraulics parameters. The algorithm is tested and the benefits of data assimilation and calibration are highlighted in an uncertainty quantification study and requantification after the calibration process. Results showed that the proposed algorithm could help to reduce the uncertainty in key reactor attributes based on experimental and operational data.

An investigation on the improvement of neutron radiography system of the Tehran research reactor by using MCNPX simulations

  • Amini, Moharram;Zamzamian, Seyed Mehrdad;Fadaei, Amir Hossein;Gharib, Morteza;Feghhi, Seyed Amir Hosein
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3413-3420
    • /
    • 2021
  • Applying the available neutron flux for medical and industrial purposes is the most important application of research reactors. The neutron radiography system is used for non-destructive testing (NDT) of materials so that it is one of the main applications of nuclear research reactors. One of these research reactors is the 5 MW pool-type light water research reactor of Tehran (TRR). This work aims to investigate on materials and location of the beam tube (BT) of the TRR radiography system to improve the index parameters of BT. Our results showed that a through-type BT with 20 cm thick carbon neutron filter, 1.2 cm and 9.4 cm of the diameter of inlet (D1) and output (D2) BT, respectively gives thermal neutron flux almost 25.7, 5.6 and 1.1 times greater than the former design of the TRR (with D1 = 1.8 cm and D1 = 9.4 cm), previous design of the TRR with D1 = 3 cm and D1 = 9.4 cm, and another design with D1 = 5 cm and D1 = 9.4 cm, respectively. Therefore, the design proposed in this paper could be a better alternative to the current BT of the TRR.

Inhibition of the Algal Growth using TiO2-embedded Expanded Polystyrene (EPS) balls in Lab-scale Outdoor Experiment

  • Kim, Ga Young;Joo, Jin Chul;Ahn, Bo Reum;Lee, Dae Hong;Park, Jae Roh;Ahn, Chang Hyuk;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • 제5권3호
    • /
    • pp.174-179
    • /
    • 2018
  • $TiO_2$-embedded expanded polystyrene (TiEPS) balls with powdered $TiO_2$ particles embedded on the surface of EPS were developed, and the growth inhibition of Chlorella ellipsoidea, a green algae, was evaluated. The experiment was conducted using four reactors with various conditions of (A) natural sunlight, (B) natural sunlight + TiEPS balls, (C) dark, and (D) dark + TiEPS balls on the roof of the building during five days. Based on the analysis of cell number, cell morphology, concentrations of chlorophyll-a and phaeopigments, both surface reactions in heterogeneous photocatalysis and light shielding could inhibit the growth of C. ellipsoidea. The highly reactive hydroxyl radicals ($OH{\cdot}$) from TiEPS balls degraded the lipid cell membrane through the peroxidation reaction with the light shielding, eventually resulting in cell inactivation. Although dominant inhibitory effects on the growth of C. ellipsoidea were ambiguous, TiEPS balls were feasible to prevent and inhibit the excessive growth of algae in eutrophic water body.

PARAMETER DEPENDENCE OF STEAM EXPLOSION LOADS AND PROPOSAL OF A SIMPLE EVALUATION METHOD

  • MORIYAMA, KIYOFUMI;PARK, HYUN SUN
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.907-914
    • /
    • 2015
  • The energetic steam explosion caused by contact between the high temperature molten core and water is one of the phenomena that may threaten the integrity of the containment vessel during severe accidents of light water reactors (LWRs). We examined the dependence of steam explosion loads in a typical reactor cavity geometry on selected model parameters and initial/boundary conditions by using a steam explosion simulation code, JASMINE, developed at Japan Atomic Energy Agency (JAEA). Among the parameters, we put an emphasis on the water pool depth that has significance in terms of accident mitigation strategies including cavity flooding. The results showed a strong correlation between the load and the premixed mass, defined as the mass of the molten material in low void zones (void fraction < 0.75). The jet diameter and velocity that comprise the flow rate were the primary factors to determine the premixed mass and the load. The water pool depth also showed a significant impact. The energy conversion ratio based on the enthalpy in the premixed mass was in a narrow range ~4%. Based on this observation, we proposed a simplified method for evaluation of the steam explosion load. The results showed fair agreement with JASMINE.

단일 가열봉의 재관수 시 2상유동 및 벽면 열전달에 관한 실험적 연구 (Experimental investigation of two-phase flow and wall heat transfer during reflood of single rod heater)

  • 박영재;김형대
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.23-34
    • /
    • 2020
  • Two-phase flow and heat transfer characteristics during the reflood phase of a single heated rod in the KHU reflood experimental facility were examined. Two-phase flow behavior during the reflooding experiment was carefully visualized along with transient temperature measurement at a point inside the heated rod. By numerically solving one-dimensional inverse heat conduction equation using the measured temperature data, time-resolved wall heat flux and temperature histories at the interface of the heated rod and coolant were obtained. Once water coolant was injected into the test section from the bottom to reflood the heated rod of >700℃, vast vapor bubbles and droplets were generated near the reflood front and dispersed flow film boiling consisted of continuous vapor flow and tiny liquid droplets appeared in the upper part. Following the dispersed flow film boiling, inverted annular/slug/churn flow film boiling regimes were sequentially observed and the wall temperature gradually decreased. When so-called minimum film boiling temperature reached, the stable vapor film between the heated rod and coolant was suddenly collapsed, resulting in the quenching transition from film boiling into nucleate boiling. The moving speed of the quench front measured in the present study showed a good agreement with prediction by a correlation in literature. The obtained results revealed that typical two-phase flow and heat transfer behaviors during the reflood phase of overheated fuel rods in light water nuclear reactors are well reproduced in the KHU facility. Thus, the verified reflood experimental facility can be used to explore the effects of other affecting parameters, such as CRUD, on the reflood heat transfer behaviors in practical nuclear reactors.

국내 원자력발전소 방사선작업에 대한 피폭 분석 및 대표 고 피폭 작업 선정 (Exposure Analysis and Selection of Representative High Exposure Tasks for Radiation Work in Domestic Nuclear Power Plants)

  • 이찬양;임영기;김광표
    • 방사선산업학회지
    • /
    • 제18권2호
    • /
    • pp.117-126
    • /
    • 2024
  • This study aims to identify high exposure tasks among the tasks performed in domestic nuclear power plants as a basis for developing training programs to improve the efficiency of workers' work. To this end, we first analyzed the exposure status of radiation work in domestic nuclear power plants. Radiation tasks in nuclear power plants were categorized, collective doses were investigated, and the collective doses were calculated based on the collective doses, and representative high exposure tasks were identified. We found that the collective and individual doses in domestic nuclear power plants are continuously decreasing, but there is an imbalance of exposure among workers. In terms of work classification, nuclear power plants are managed in 236 work codes based on light water reactors and 181 work codes based on heavy water reactors, depending on the work equipment and location. Among the total work codes, 23 codes have an annual average dose exceeding 10 μSv, and based on this, 10 representative high exposure tasks were derived. The representative high exposure tasks were selected as S/G nozzle dam work, S/G debris removal work, nuclear instrumentation system, S/G eddy current detection work, and insulation work. The results of this study are expected to serve as an important basis for reducing the exposure of workers in nuclear power plants and improving work efficiency.

과도상태 2상유동 해석을 위한 비정렬.비엇갈림 격자 SMAC 알고리즘 (AN EXTENSION OF THE SMAC ALGORITHM FOR THERMAL NON-EQUILIBRIUM TWO-PHASE FLOWS OVER UNSTRUCTURED NON-STAGGERED GRIDS)

  • 박익규;윤한영;조형규;김종태;정재준
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.51-61
    • /
    • 2008
  • The SMAC (Simplified Marker And Cell) algorithm is extended for an application to thermal non-equilibrium two-phase flows in light water nuclear reactors (LWRs). A two-fluid three-field model is adopted and a multi-dimensional unstructured grid is used for complicated geometries. The phase change and the time derivative terms appearing in the continuity equations are implemented implicitly in a pressure correction equation. The energy equations are decoupled from the momentum equations for faster convergence. The verification of the present numerical method was carried out against a set of test problems which includes the single and the two-phase flows. The results are also compared to those of the semi-implicit ICE method, where the energy equations are coupled with the momentum equation for pressure correction.

CF8M 주조 오스테나이트 스테인리스강의 열취화에 따른 재료물성치 평가 (Evaluation of Material Properties due to Thermal Embrittlement in CF8M Cast Austenitic Stainless Steel)

  • 김철;박흥배;진태은;정일석;석창성;박재실
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.131-136
    • /
    • 2003
  • CF8M cast austenitic stainless steel is used for several components such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. In this study, three kinds of the aged CF8M specimen were prepared using an artificially simulated aging method. The objective of this study is to summarize the method of estimating ferrite contents, Charpy impact energy and J-R curve, and to evaluate the thermal embrittlement of the CF8M cast austenitic stainless steel piping used in the domestic nuclear power plants.

  • PDF

CFD analysis of the effect of different PAR locations against hydrogen recombination rate

  • Lee, Khor Chong;Ryu, Myungrok;Park, Kweonha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.112-119
    • /
    • 2016
  • Many studies have been conducted on the performance of a passive autocatalytic recombiner (PAR), but not many have focused on the locations where the PAR is installed. During a severe accident in a nuclear reactor containment, a large amount of hydrogen gas can be produced and released into the containment, leading to hydrogen deflagration or a detonation. A PAR is a hydrogen mitigation method that is widely implemented in current and advanced light water reactors. Therefore, for this study, a PAR was installed at different locations in order to investigate the difference in hydrogen reduction rate. The results indicate that the hydrogen reduction rate of a PAR is proportional to the distance between the hydrogen induction location and the bottom wall.