• Title/Summary/Keyword: Light Reflection

Search Result 585, Processing Time 0.025 seconds

Image Processing for 3-D Shape Estimation of Specular Reflection (경면반사체의 3차원 형상 추정을 위한 영상처리)

  • Kim, Jee-Hong;Cho, Byung-Gwon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • A method to estimate the 3-D shape of surface with specular reflection is proposed, where the difference between the images reflected from a flat surface and a curved surface is used. First, we analyzed the geometry of the spatial reflection at specular surface and the variation of reflected light due to curved surface, whose results are used to estimate 3-D shape. The proposed method is shown to be effective via experiments using the illumination with spatially distributed light source and the CCD camera to capture the light reflected from a surface. In experiments, the captured images from curved surface with specular reflection are processed to approximately estimate 3-D shape.

The research of anti-reflection coating using porous silicon for crystalline silicon solar cells (다공성 실리콘을 이용한 결정질 실리콘 태양전지 반사방지막에 관한 연구)

  • Lee, Jaedoo;Kim, Minjeong;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The crystalline silicon solar cells have been optical losses. but it can be reduced using light trapping by texture structure and anti-reflection coating. The high reflective index of crystalline silicon at solar wavelengths(400nm~1000nm) creates large reflection losses that must be compensated for by applying anti-reflection coating. In this study, the use of porous silicon(PSi) as an active material in a solar cell to take advantage of light trapping and blue-harvesting photoluminescence effect. Porous silicon is form by anodization and can be obtained in an electrolyte with hydrofluoric. We expect our research can results approaching to lower than 10% of several reflectance by porous silicon solar cells.

  • PDF

A Study on Performance Evaluation of Light Shelf according to the Reflectivity of Interior Space (실내 공간의 반사율에 따른 광선반 성능평가 연구)

  • Jeon, Gangmin;Lee, Heangwoo;Kim, Yongseong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.5
    • /
    • pp.461-470
    • /
    • 2015
  • There has been a significant increase in the amount of research on reducing the lighting power consumption of buildings and also an increasing demand for technological development. Light shelf has been recognized as one of the most efficient solutions to this issue and related researches have been conducted, which have mostly focused on factors related to simple light shelves and are not suitable as an appropriate basis for the design of light shelves. Thus this study aims to establish the proper design basis for light shelves by evaluating the performance of shelves per reflection rate in indoor areas. Power consumption rate and indoor illumination intensity distribution of a testbed built based on actual living conditions were calculated for the performance evaluation, of which the results are as following: 1) Reduction of reflection rate of ceiling and walls caused average illumination intensity in summer, winter and median seasons, and evenness per reflection rate of indoor areas was found to be different in summer, winter and median seasons, making it a necessary consideration for designing light shelves. 2) Calculation of power consumption from lighting control showed that a high reflection rate of indoor areas may be suitable for power consumption reduction, and that reflection rates higher than 80% for ceilings and higher than 75% for walls in terms of the efficiency of researches on the indoor reflection rate and its application would be appropriate. This study is meaningful as the research focuses on light shelves based on considering indoor environmental factors. More studies will be required that consider a variety of factors.

A Study on the Type of Light in Fashion Design (패션디자인에 활용된 빛의 유형 분석)

  • Jung, Hyun;Geum, Key-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.2
    • /
    • pp.120-133
    • /
    • 2008
  • The purpose of this study is to analysis types of light and to find the characteristics of light in contemporary fashion design. In a scientific context, light is electromagnetic radiation of a wavelength that has the characteristics of straightness, reflection, refraction, scattering and diffraction. But in philosophical speculations, light has been used as a metaphor of 'being', 'to-be' or 'enlightenment.' And through the ages, people have tried to represent and apply the light into plastic art like painting and architecture. The types of light in fashion design was categorized as those; reflective light from the surface of clothing which is the result of interaction between illumination and material, representative light as the pattern of light or light effect such as sun or its rays and optical or psychedelic patterns, luminescent light from light emitting material like phosphorescence or LED which combines into fashion design, projective light from a medium to reveal virtual patterns on the surface or a fashion design itself using holography. These lights in fashion design can be considered as reflection of emphasis of sexuality, longing for fantasy and mystique, visualization of interaction and communication and groping for the play.

Improvement of Light Extraction Efficiency of LED Packages Using an Enhanced Encapsulant Design

  • Choi, Hyun-Su;Park, Joon-Sik;Moon, Cheol-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2014
  • We optimized the design of the flat encapsulant of a light-emitting diode (LED) package to obtain higher light output power (LOP), both by experiment and simulation using three-dimensional ray-tracing software. In the experiment, the refractive index of the encapsulant was varied (1.41 and 1.53). In addition, double-layer structures with these refractive indices (1.41/1.53) were investigated by varying the shape of the interface between the two among flat, concave, and convex. The experiments showed that the LOP of the double-layer encapsulant with convex interface increased by 13.4% compared to the single-layer encapsulant with a refractive index 1.41, which was explained by the increase of the light extraction efficiency (LEE) in connection with the increase of the critical angle (${\theta}_c$) and the decrease of the Fresnel reflection.

Light-managing Techniques at Front and Rear Interfaces for High Performance Amorphous Silicon Thin Film Solar Cells (고성능 비정질실리콘 박막태양전지를 위한 전후면 계면에서의 빛의 효율적 관리 기술)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.354-356
    • /
    • 2017
  • We focused on light management technology in amorphous silicon solar cells to suppress increase in absorber thickness for improving power conversion efficiency (PCE). $MgF_2$ and $TiO_2$ anti-reflection layers were coated on both sides of Asahi VU ($glass/SnO_2:F$) substrates, which contributed to increase in PCE from 9.16% to 9.81% at absorber thickness of only 150 nm. Also, we applied very thin $MgF_2$ as a rear reflector at n-type nanocrystalline silicon oxide/Ag interface to boost photocurrent. By reinforcing rear reflection, we could find the PCE increase from 10.08% up to 10.34% based on thin absorber about 200 nm.

Pre-Service Elementary Teachers' Visual Modeling Process for Reflection of Light (빛의 반사 현상에 대한 초등 예비교사의 시각적 모델링 과정)

  • Yoon, Hye-Gyoung;Lee, Insun;Park, Jeongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.1
    • /
    • pp.19-32
    • /
    • 2021
  • This study aims to analyze the visual modeling process of pre-service elementary teachers on the reflection of light. The analytical framework was developed from three aspects; coherence, correspondence, and commensurability of the modeling thinking proposed by Halloun (2004). 20 pre-service elementary teachers participated and were randomly paired to observe the reflection of light. They were asked to construct the visual model individually at first and then collaboratively. Comparing personal and cooperative models, the level of correspondence and commensurability in some groups has increased, despite the lack of special educational treatment. In addition, three main features were found in their reasoning process. First, the level of commensurability to apply the law of reflection continued to change fluidly depending on the circumstances and often the verbal and visual explanations did not match. Second, in the process of visual modeling, correspondence was often given priority over commensurability and coherence. Third, in a situation where correspondence and commensurability are at odds with each other, participants resolved this conflict and developed reasoning through review and revision of the auxiliary hypothesis. Several implications have been discussed for effectively guiding visual modeling activities.

Preparation and characterization of TiO2 anti-reflective layer for textured Si (100)

  • Choe, Jin-U;Nam, Sang-Hun;Jo, Sang-Jin;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.322-322
    • /
    • 2010
  • Recently, anti-reflective films (AR) are one of the most studied parts of a solar cell since these films improve the efficiency of photovoltaic devices. Also, anti-reflection films on the textured silicon solar cells reduce the amount of reflection of the incident light, which improves the device performance due to light trapping of incident light into the cell. Therefore, we preformed two step processes to get textured Si (100) substrate in this experiment. Pyramid size of textured silicon had approximately $2{\sim}9\;{\mu}m$. A well-textured silicon surface can lower the reflectance to 10%. For more reduced reflection, TiO2 anti-reflection films on the textured silicon were deposited at $600^{\circ}C$ using titanium tetra-isopropoxide (TTIP) as a precursor by metal-organic chemical vapor deposition (MOCVD), and the deposited TiO2 layers were then treated by annealing for 2 h in air at 600 and $1000^{\circ}C$, respectively. In this process, the treated samples by annealing showed anatase and rutile phases, respectively. The thickness of TiO2 films was about $75{\pm}5\;nm$. The reflectance at specific wavelength can be reduced to 3% in optimum layer.

  • PDF

Investigation of the Light Reflection from Dielectric Thin Films Coated on Substrates (기판 위에 입혀진 유전체 박막의 빛 반사에 관한 연구)

  • Kim, Deok Woo;Kim, Jiung;Kim, Byoung Joo;Cha, Myoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.321-327
    • /
    • 2020
  • We investigated the light reflection from thin films coated on substrates. Using a prism with a high refractive index as the incident medium, the phenomena of the total internal reflection (TIR) of the prism/film/substrate system and the light coupling into the optical waveguide formed by the air/film/substrate system were comprehensively studied and compared. If the refractive index of the thin film is greater than that of the substrate, within the TIR region of the substrate, sharp reflection minima occur at specific angles where the waveguide modes are excited, that can be used to accurately measure the refractive index and thickness of a thin film. On the other hand, if the refractive index of the thin film is smaller than that of the substrate, such waveguide modes do not exist. In this case, although not so distinct as a bulk medium, the TIR effect of the thin film is still observable, accompanied by an interference pattern. In this study we analyzed the overall reflection phenomena occurring from prism/film/substrate structures, to investigate the possibility of measuring the refractive index of a thin film in both cases.

3D shape reconstruction using laser slit beam and image block (레이저슬릿광과 이미지블럭을 이용한 경면물체 형상측정알고리즘)

  • 곽동식;조형석;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.93-96
    • /
    • 1996
  • Structured laser light is a widely used method for obtaining 3D range information in Machine Vision. However, The structured laser light method is based on assumption that the surface of objects is Lambertian. When the observed surfaces are highly specularly reflective, the laser light can be detected in various parts on the image due to a specular reflection and secondary reflection. This makes wrong range data and the image sensor unusable for the specular objects. To discriminate wrong range data from obtained image data, we have proposed a new algorithm by using the cross section of image block. To show the performance of the proposed method, a series of experiments was, carried out on: the simple geometric shaped objects. The proposed method shows a dramatic improvement of 3D range data better than the typical structured laser light method.

  • PDF