• Title/Summary/Keyword: Light Position Estimation

Search Result 51, Processing Time 0.024 seconds

A study on the PSD sensor system for localization of mobile robots (이동 로봇의 위치측정을 위한 PSD 센서 시스템에 관한 연구)

  • Ro, Young-Shick
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.330-336
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robots work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF

Navigation of a mobile robot using active landmarks (능동 표식을 이용한 이동 로봇의 운행)

  • 노영식;김재숙;권석근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.916-919
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robot's work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF

Estimation Algorithm of Receiver's Position and Angle Based on Tracking of Received Light Intensity for Indoor Visible Light Communication Systems (실내 가시광 무선 통신 시스템의 수신 광도 변화 추적 기반 단말기 위치 및 수신각 추정 알고리즘)

  • Hwang, Jun-Ho;Lee, Ji-Soo;Yoo, Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.60-67
    • /
    • 2011
  • Visible light communication system transmits data by controlling light emission of LED and receives data through photo detecter, which is considered as one of strong candidates of next generation wireless communication systems. The transmission capacity of visible light communication system depends on light intensity emitted from LED, sensitivity of PD, distance between transmitter and receiver, angle of incidence at the receiver. In particular, the receiver's vertical and horizontal movement changes distance between transmitter and receiver and angle of incidence, which may degrades transmission capacity of system. In this paper, we propose an estimation algorithm of receiver's position and angle based on tracking of received light intensity for indoor visible light communication systems. The performance evaluation of proposed algorithm confirms that the estimation algorithm of receiver's position and angle is quite important for visible light communication system to improve its transmission capacity.

The Position Estimation of a Body Using 2-D Slit Light Vision Sensors (2-D 슬리트광 비젼 센서를 이용한 물체의 자세측정)

  • Kim, Jung-Kwan;Han, Myung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.133-142
    • /
    • 1999
  • We introduce the algorithms of 2-D and 3-D position estimation using 2-D vision sensors. The sensors used in this research issue red laser slit light to the body. So, it is very convenient to obtain the coordinates of corner point or edge in sensor coordinate. Since the measured points are normally not fixed in the body coordinate, the additional conditions, that corner lines or edges are straight and fixed in the body coordinate, are used to find out the position and orientation of the body. In the case of 2-D motional body, we can find the solution analytically. But in the case of 3-D motional body, linearization technique and least mean squares method are used because of hard nonlinearity.

  • PDF

The Position Estimation of a Car Using 2D Vision Sensors (2D 비젼 센서를 이용한 차체의 3D 자세측정)

  • 한명철;김정관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.296-300
    • /
    • 1996
  • This paper presents 3D position estimation algorithm with the images of 2D vision sensors which issues Red Laser Slit light and recieves the line images. Since the sensor usually measures 2D position of corner(or edge) of a body and the measured point is not fixed in the body, the additional information of the corner(or edge) is used. That is, corner(or edge) line is straight and fixed in the body. For the body which moves in a plane, the Transformation matrix between the body coordinate and the reference coordinate is analytically found. For the 3D motion body, linearization technique and least mean squares method are used.

  • PDF

Fast Estimation of Three-dimensional Spatial Light Intensity Distribution at the User Position of an Autostereoscopic 3D Display by Combining the Data of Two-dimensional Spatial Light Intensity Distributions

  • Hyungki Hong
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.307-312
    • /
    • 2024
  • Measuring the three-dimensional (3D) spatial light intensity distribution of an autostereoscopic multiview 3D display at the user position is time-consuming, as luminance has to be measured at different positions around the user position. This study investigates a method to quickly estimate the 3D distribution at the user position. For this purpose, a measurement setup using a white semitransparent diffusing screen or a two-dimensional (2D) spatial sensor was devised to measure the 2D light intensity distribution at the user position. Furthermore, the 3D spatial light intensity distribution at the user position was estimated from these 2D distributions at different viewing distances. From the estimated 3D distribution, the characteristics of autostereoscopic 3D display performance can be derived and the candidate positions for further accurate measurement can be quickly determined.

A study on the real-time Position measurements of mobile object using neural network (신경 회로망을 이용한 이동물체의 실시간 위치측정에 대한 연구)

  • Ro, Jae-H.;Yi, Un-K.;Ro, Young-S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.832-834
    • /
    • 1999
  • This paper is a study on the real-position measurements of mobile object using n network. 2-D PSD sensor is used to measure th position of moving object with light source. Position Sensitive Detector(PSD) is an useful which can be used to measure the position o incidence light in accuracy and in real-time. T the position of light source of moving target, neural network technique are proposed and applied. Real-time position measurements of the mobile robot with light source is examined to validate the proposed method. It is shown that the proposed technique provides accurate position estimation of the moving object.

  • PDF

Robot Posture Estimation Using Circular Image of Inner-Pipe (원형관로 영상을 이용한 관로주행 로봇의 자세 추정)

  • Yoon, Ji-Sup;Kang , E-Sok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.258-266
    • /
    • 2002
  • This paper proposes the methodology of the image processing algorithm that estimates the pose of the inner-pipe crawling robot. The inner-pipe crawling robot is usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose of defects on the pipe wall and/or the maintenance operation. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light from the inner wall of the pipe vary with the robot posture and the camera. The proposed algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot . Based on the fact that the vanishing point of the reflected light moves into the opposite direction from the camera rotation, the camera rotation angle can be estimated. And, based on the fact that the most bright parts of the reflected light moves into the same direction with the camera translation, the camera position most bright parts of the reflected light moves into the same direction with the camera translation, the camera position can be obtained. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

Analysis on Position Estimation Performance according to Injection Frequency in Carrier-Based Sensorless Operation (반송파 기반 센서리스 운전에서 주입하는 신호의 주파수에 따른 위치 추정 성능 분석)

  • Hwang, Chae-Eun;Lee, Younggi;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2018
  • This work puts forward a theoretical analysis on position estimation performance of interior permanent magnet synchronous motor (IPMSM) according to the injection frequency in carrier-based sensorless operation. The effects of spatial harmonics on inductance and voltage distortion due to the nonideal characteristics of IPMSM and inverter are examined as factors influencing the position estimation performance. Furthermore, the position estimation performance is analyzed by calculating the current at the switching instant in several operating conditions. In summary, the half switching frequency injection is more robust to the nonideal characteristics of IPMSM, especially with light load condition. The validity of the analysis is verified by the simulation and experimental results.

Position Measurements of Moving Object in Cartesian Coordinate (직교좌표에서 이동물체의 위치측정)

  • 이용중;노재희;이양범
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.36-42
    • /
    • 2001
  • In this paper, PSD(Position Sensitive Detector) sensor system that estimates position for moving objects in 2D plane is developed. PSD sensor is used to measure the position the position of and incidence light in real-time. To get the position of light source of moving target, a new parameter calibration algorithm and neural network technique are proposed and applied. Real-time position measurements of the mobile robot with light source is examined to validate the proposed method. It is shown that the proposed technique provides accurate position estimation of the moving object.

  • PDF