• Title/Summary/Keyword: Light Metal

Search Result 1,254, Processing Time 0.032 seconds

Design and Implementation of Polymer-Light Emitting Diodes by using Nanocantact Printing (나노접촉 인쇄공정을 이용한 폴리머 유기정보표시소자 설계 및 구현)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1511-1513
    • /
    • 2005
  • The polymer-light emtting diodes(PLEDs) were comprised a design of OLED array, process develop by using ITO thin glass, and fabrication of PDMS stamp by using nanocontact printing. In the study, we describe a different approach for building OLEDs, which is based on physical lamination of thin metal electrodes supported by a PDMS stamp layer against an electroluminescent organic. We develop that devices fabricated in this manner have better performance than those constructed with standard processing techniques. The lamination approach avoids forms of disruption that can be introduced at the electrode organic interface by metal evaporation and has a reduced sensitivity to pinhole or partial pinhole defects. Also, it is easy to build patterned PLED with feature sizes into the nanometer regime. This method provides a new route to PLED for applications ranging from high performance displays to storage and lithography systems, and PLED can used for organic electronics and flexible display.

  • PDF

Improved Electron Injection on Organic Light-emitting Diodes with an Organic Electron Injection Layer

  • Kim, Jun-Ho;Suh, Chung-Ha;Kwak, Mi-Young;Kim, Bong-Ok;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.221-224
    • /
    • 2005
  • To overcome of poor electron injection in organic light-emitting diodes (OLEDs) with Al cathode, a thin layer of inorganic insulating materials, like as LiF, is inserted between an Al cathode and an organic electron transport layer. Though the device, mentioned above, improves both turn on voltage and luminescent properties, it has some problems like as thickness restriction, less than 2 nm, and difficulty of deposition control. On the other hand, Li organic complex, Liq, is less thickness restrictive and easy to deposit and it also enhances the performance of devices. This paper reports the improved electron injection on OLEDs with another I A group metal complex, Potassium quinolate (Kq), as an electron injection material. OLEDs with organic complexes showed improved turn-on voltage and luminous efficiency which are remarkably improved compared to OLEDs with Al cathode. Especially, OLEDs with Kq have longer life time than OLEDs with Liq.

A SPICE-based 3-dimensional circuit model for Light-Emitting Diode (SPICE 기반의 발광 다이오드 3차원 회로 모델)

  • Eom, Hae-Yong;Yu, Soon-Jae;Seo, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.7-12
    • /
    • 2007
  • A SPICE-based 3-dimensional circuit model of LED(Light-Emitting Diode) was developed for the design optimization and analysis of high-brightness LEDs. An LED is represented as an array of pixel LEDs with small preassigned areas, and each of the pixel LEDs is composed of circuit networks representing the thin-film layers(n-metal, n- and p-type semiconductor layers, and p-metal), ohmic contacts, and pn-junctions. Each of the thin-film layers and contact resistances is modeled by a resistance network, and the pn-junction is modeled by a conventional pn-junction diode. It has been found that the simulation results using the model and the corresponding parameters precisely fit the measured LED characteristics.

Photodegradation of Volatile Organic Compound (VOC) Through Pure TiO2 and V-Doped TiO2 Coated Glasses

  • Moon, Jiyeon;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.425.2-425.2
    • /
    • 2014
  • $TiO_2$ possesses great photocatalytic properties but absorbs only UV light owing to high band gap energy (Eg = 3.2 eV). By narrowing the band gap through doping a metal ion, the photocatalytic activity can be enhanced in condition of the light of a higher than 365 nm wavelength. Main purpose for this study is to evaluate the activities of metal doped $TiO_2$ for degrading the volatile organic compounds (VOCs); p-xylene is chosen in the VOC removal test. Vanadium is selected in this study because an ionic radius of vanadium is almost the same as titanium ion and vanadium can be easily doped into $TiO_2$. V-doped $TiO_2$ was synthesized by sol-gel methods and compared with pure $TiO_2$. Pure TiO2 powder and V-doped $TiO_2$ powder were coated on glasses by spray coating method. UV-Visible spectrophotometer was used for the measurement of the band gap changes. VOC concentration degradation level was tested with using various UV light sources in an enclosed chamber. Catalytic activities of prepared samples were evaluated based on the experimental results and compared with coated pure $TiO_2$ sample.

  • PDF

Characterization of Organic Light-Emitting Diode (OLED) with Dual Emission using Al:Au Cathode (Al:Au 음극층을 이용한 양면발광(dual emission) 유기 EL 소자의 Al 두께별 특성 평가)

  • Lee, Su-Hwan;Kim, Dal-Ho;Yang, Hee-Doo;Kim, Ji-Heon;Lee, Gon-Sub;Park, Jea-Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.47-51
    • /
    • 2008
  • The Al:Au double-layer metal electrode for use in transparent, dual emission of organic light-emitting diode (OLED) was fabricated. The electrode of Al:Au metals with various thicknesses was deposited by the vacuum thermal evaporation technique. For Al thickness of 1 nm, a bottom luminance of $4880\;cd/m^2$ was observed at 8 V. Otherwise, top luminance of $2020\;cd/m^2$ were observed at 8 V. In addition, the threshold voltages of the electrodes were 2.2 V. It was forward that the inserting 1 nm Al between LiF and Au enhanced electron injection with tunneling effect.

  • PDF

Characterization of Photoinduced Current in Poly-Si Solar Cell by Employing Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.35-38
    • /
    • 2012
  • In this study, we have attempted to characterize the photovoltaic effect in real-time measurement of photoinduced current in a poly-Si-based solar cell using photoconductive atomic force microscopy (PC-AFM). However, the high contact resistance that originates from the metal-semiconductor Schottky contact disturbs the current flow and makes it difficult to measure the photoinduced current. To solve this problem, a thin metallic film has been coated on the surface of the device, which successfully decreases the contact resistance. In the PC-AFM analysis, we used a metal-coated conducting cantilever tip as the top electrode of the solar cell and light from a halogen lamp was irradiated on the PC-AFM scanning region. As the light intensity becomes stronger, the current value increases up to $200{\mu}A$ at 80 W, as more electrons and hole carriers are generated because of the photovoltaic effect. The ratio of the conducting area at different conditions was calculated, and it showed a behavior similar to that generated by a photoinduced current. On analyzing the PC-AFM measurement results, we have verified the correlation between the light intensity and photoinduced current of the poly-Si-based solar cell in nanometer scale.

Photo-response of Polysilicon-based Photodetector depending on Deuterium Incorporation Method (중수소 결합 형성 방법에 따른 다결정 실리콘 광검출기의 광반응 특성)

  • Lee, Jae-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.29-35
    • /
    • 2015
  • The photo-response characteristics of polysilicon based metal-semiconductor-metal (MSM) photodetector structure, depending on deuterium treatment method, was analyzed by means of the dark-current and the light-current measurements. Al/Ti bilayer was used as a Schottky metal. Our purpose is to incorporate the deuterium atoms into the absorption layer of undoped polysilicon, effectively, for the defect passivation. We have introduced two deuterium treatment methods, a furnace annealing and an ion implantation. In deuterium furnace annealing, deuterium bond was distributed around polysilicon surface where the light current flows. As for the ion implantation, even thought it was a convenient method to locate the deuterium inside the polysilicon film, it creates some damages around polysilicon surface. This deteriorated the photo-response in our photodetector structure.