• Title/Summary/Keyword: Light Guide

Search Result 381, Processing Time 0.022 seconds

Dynamic Response Analysis of AGT Vehicle Considering Surface Roughness of Railway (노면 요철을 고려한 AGT 차량의 동적 응답 해석)

  • Song, Jae-Pil;Kim, Chul-Woo;Kim, Ki-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.986-993
    • /
    • 2002
  • The equations of motion for an automated guide-way transit(AGT) system running on a path with roughness have been derived to investigate dynamic responses and wheel loads of moving vehicles of the AGT system. A vehicle of the AGT system is idealized as three-dimensional model with 11 degree-of-freedom. The computer program is developed to solve the dynamic equations, and anlatical results are verified by comparing the results with experimental oness. Parametric studies are carried out to investigate the dynamic responses of an AGT vehicle according to vehicle speeds, surface roughness, damping and stiffness of suspension systems. The parametric study demonstrates that amplitudes of dynamic responses and the wheel loads have a tendency to increase according to travel speeds, the stiffness of suspension system and surface roughness. On the other hand. those amplitudes tend to decrease according to increase of damping of the suspension system.

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

A Study for Flaw Detection of 3/4″ Pipe by Using Guided Wave (유도초음파를 이용한 3/4″ 배관 결함 검출 연구)

  • Chung, Woo Geun;Kim, Jin-Hoi;Cheon, Keun Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.40-45
    • /
    • 2019
  • Unlike the welded pipes in the primary system of light water nuclear power plants being periodically inspected with in-Service inspection program, relatively small pipes with the outer diameter less than 2 inch have not been regularly inspected to date. However, after several failure reports on the occurrence of critical crack-like defects in small pipes, inspection for the small pipes has been more demanded because it could cause the provisional outage of nuclear power plants. Nevertheless, there's no particular method to examine the small pipes having access limitations for inspection due to various reasons; inaccessible area, excessive radiation exposure, hazardous surrounding, and etc. This study is to develop a reliable inspection technique using torsional and flexural modes of guided wave to detect defects that could occur in inaccessible area. The attribute of guided wave that can travel a long distance enables to inspect even isolated range of the pipe from accessible location. This paper presents a case study of the evaluation test on 3/4" small-bore pipes with guide wave method. The test result demonstrates the crack signal behavior and assures possibility to detect the crack signal in a flexural mode, which is clearly distinguishable from the symmetric structure signal in a torsional mode.

Computer vision monitoring and detection for landslides

  • Chen, Tim;Kuo, C.F.;Chen, J.C.Y.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.161-171
    • /
    • 2019
  • There have been a few checking frameworks intended to ensure and improve the nature of their regular habitat. The greater part of these frameworks are constrained in their capacities. In this paper, the insightful checking framework intended for debacle help and administrations has been exhibited. The ideal administrations, necessities and coming about plan proposition have been indicated. This has prompted a framework that depends fundamentally on ecological examination so as to offer consideration and security administrations to give the self-governance of indigenous habitats. In this sense, ecological acknowledgment is considered, where, in light of past work, novel commitments have been made to help include based and PC vision situations. This epic PC vision procedure utilized as notice framework for avalanche identification depends on changes in the normal landscape. The multi-criteria basic leadership strategy is used to incorporate slope data and the level of variety of the highlights. The reproduction consequences of highlight point discovery are shown in highlight guide coordinating toward discover steady and coordinating component focuses and effectively identified utilizing these two systems, by examining the variety in the distinguished highlights and the element coordinating.

A study on the monitoring of cooling time using the change in the magnitude of mold vibration in injection molding (사출성형에서 공정 중 금형의 진동 크기 변화를 활용한 냉각시간 모니터링에 대한 연구)

  • Yeung, Chris;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.45-49
    • /
    • 2021
  • In this study, during the injection molding process, a device was manufactured and evaluated that calculates a cooling time by measuring a vibration signal generated from a mold using an acceleration. The last two parts, one of which has a large magnitude change in the measured vibration signal of a mold, were divided into a cooling start section (paking end section) and a mold opening section, and the time difference at the relevant points was calculated as the cooling time. The cooling time was monitored on a 5-inch light guide plate mold by applying the method. The manufactured device was attached to a fixed base of mold to measure the cooling time, and data was obtained remotely using Bluetooth technology. Then, the measured cooling time was compared with the cooling time set in the injection molding machine to evaluate the accuracy. As a result of the experiment, the cooling times measured by the devices were 15.675±0.024 sec, 20.637±0.014 sec and 25.623±0.079 sec of each conditions. Also, the measurement results were shown with errors of 0.655±0.044 sec, 0.637±0.014 sec, and 0.662±0.013 sec, respectively.

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

Bending and stability information of cylindrical structures in the application of sports equipment

  • Xiaoyuan Liu;Radzliyana Radzuwan;Nadiah Diyana Tan Binti Abdullah
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.189-203
    • /
    • 2023
  • This study investigates the bending and stability properties of cylindrical constructions, with a focus on their use in the design and implementation of sporting equipment. The work focuses on a cylindrical construction resembling nanomotors, similar to components seen in sports equipment, using mathematical modeling based on high-order beam theory and nonlocal strain gradient theory. The analysis provides important insights into the dynamic behavior of these systems, revealing light on the impact of numerous factors such as rotational velocity, section change rate, and structural dimensions. The results show a relationship between angular velocity growth and section change rate, which leads to an increase in fundamental frequency values. Furthermore, the research emphasizes the effect of structural factors on dynamic deflection, giving critical information for increasing the stability and performance of sporting equipment. This study adds to the area of sports engineering by providing a more nuanced understanding of how cylindrical constructions react under diverse settings. The results will help to guide the design and manufacturing processes of sports equipment, assuring improved stability and performance for players across a wide range of sports.

THERMAL CHANGE AND MICROHARDNESS IN CURING COMPOSITE RESIN ACCORDING TO VARIOUS CURING LIGHT SYSTEM (광중합기에 따른 복합레진 중합시 온도 변화와 미세경도에 관한 연구)

  • Lee, Dong-Jin;Kim, Dae-Eop;Yang, Yong-Sook;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.391-399
    • /
    • 2004
  • The purpose of this study was to compare curing efficiency of newly developed curing units to traditional halogen curing unit by measuring thermal change and surface microhardness according to curing light system. Materials and mathods : The types of curing units were traditional low intensity halogen light(Optilux 360), plasma arc light(Flipo), low heat plasma arc light(Aurys), low intensity LED(Starlight), and high intensity LED(Freelight2). Temperature at the tip of light guide was measured by a digital thermometer using K-type thermocouple. And after resin was filled to 2, 3, 4mm teflon mold, bottom temperature measured during curing. After 24 hours, microhardness of top surface and bottom surface of each resin specimen were measured. Results : The result of this study can be summarized as follows, 1. As measuring temperature of curing unit tips, Flipo is the highest as $52.4^{\circ}C,\;Freelight2(37.86^{\circ}C),\;Optilux360(32.68^{\circ}C),\;Aurys(32.34^{\circ}C),\;and\;Starlight(26.14^{\circ}C)$ were followed. 2. Flipo and Freelight2 were the highest similarly and Optilux360 and Aurys were similarly next and Starlight was lowest in temperature of bottom surface of resin mold. 3. Microhardness of top surface were generally similar, and Aurys was relatively low. 4. Optilux 360 and Freelight2 were the highest, and Flipo, Starlight, and Aurys were followed in microhardness of bottom surface. Conclusions : The results suggest that careful use of Flipo and Freelight2 might be able to cure greater depth of resin composite and do not cause thermal problems than other curing units.

  • PDF

LED Source Optimization for the LED Chip Array of the LED Luminaires (LED 조명기구에서 LED 칩 배치에 따른 광원 최적화)

  • Yoon, Seok-Beom;Chang, Eun-Young
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.419-424
    • /
    • 2016
  • In this paper, we studied a light distribution for the LED chips arrangement using an optical design software. The structures of the edge type LED luminaires are reflector plane, LGP(lighting guide plane) and diffuse plane. The reflector plane is on the middle of the overall structure. We had simulation that placing LED chips on the reflector center of the reflector edge by changing the position of LED chips above the reflector center at 1mm, 2mm, and 3mm respectively. In the case, when LED chips are on the center of the reflector, it shows the light distribution of the general diffuse illumination, the semi-direct distribution with 0.56 efficiency and the direct distribution with 0.31 efficiency. And the wedge type LGP shows more efficiency than the flat type. Gradually increasing shape of semi-spherical type by 0.015mm has power of 1.02W, efficiency of 0.25, and maximum luminous intensity of 0.104W/sr, it also and shows the better optical characteristics than the reflector plane that have no patterns. This semi-spherical type shows the better optical characteristics than the reflector plane that have no patterns.

Shade comparative analysis of natural tooth measured by visual and spectrophotometric methods (육안과 분광 측정기를 이용한 자연 치아의 색조비교분석)

  • Kim, Bum-Suk;Shin, Soo-Yeon;Lee, Jong-Hyuk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.443-454
    • /
    • 2008
  • Statement of problem: A clinically successful color match is one of the important factor to get an esthetic dental restoration. Dental shade guides are commonly used to evaluate tooth color in restorative procedure. But numerous reports have indicated that common shade guides do not provide sufficient spectral coverage of the natural tooth colors. To address issues associated with the shade guide, distinct avenues have been pursued objective spectrophotometric / colorimetric assessment. Purpose: This study compared the accuracy of tooth color selection of spectrophotometer with that of human visual determination. Three main factors were investigated, namely, the effect of light, the individual variation and the experience of the observer. Material and methods: At the first experiment, on ten patients, one operator independently selected the best matching shade to the unrestored maxillary central incisor, using a Vita Classical Shade Guide in the morning, at noon and in the afternoon. The same teeth were measured by means of a reflectance spectrophotometer. At the second experiment, on ten patients, ten operators (5 experts, 5 novices) selected and measured by the same method above at noon. At the third experiment, the results of the second experiment were divided into two groups, expert and novice, and analyzed. Results: 1. There was significant difference between visual and spectrophotometric assessment (mean ${\Delta}E$ values) in experiment 1, 2, 3 (P < .05). 2. There was no significant difference between experts and novices group, when comparing with each visual and spectrophotometric assessment (mean ${\Delta}E$ values). Conclusion: Spectrophotometer could be used to analyze the shade of natural tooth objectively. Thereby, this method offers the potential tominimize considerably the need for corrections or even remakesafter intraoral try-in of restoration. Furthermore, to achieve its advantage, both the shade-matching environment and communication between dentist and technician should be optimized with use of visual and instrumental shade-matching systems.