• Title/Summary/Keyword: Light Detection and Ranging (LIDAR)

Search Result 69, Processing Time 0.022 seconds

Estimation of the carbon absorption of a forest using Lidar Data (항공 라이다 데이터를 이용한 산림의 탄소 흡수량 측정)

  • Wie, Gwang-Jae;Lee, Hyun;Lee, Dong-Ha;Cho, Jae-Myung;Suh, Yong-Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • Amidst the raising of climate change in relation to the earth's environment as an international issue, there is a growing interest in forest resources. In particular, Korea faces a period in which we need to control carbon release pursuant to the Convention on Climate Change and the enforcement of the Kyoto Protocol; therefore, the importance of forests is becoming greater. Recently, there has been a focus on light detection and ranging (Lidar) which is a means of acquiring in a short time various necessary pieces of information for forest management as three dimensional geospatial information. In this study, the carbon absorption of a forest was measured by using the Lidar data obtained from the Lidar. Carbon absorption release was calculated on the basis of three criteria involving the minimum height of a tree, the density of the forest, and the minimum area of the forest, which are items proposed by the Forest resources surveyor. Through this study, a method of extracting the carbon absorption of a forest area using the Lidar data quantitatively was confirmed.

AUTOMATIC ADJUSTMENT OF DISCREPANCIES BETWEEN LIDAR DATA STRIPS - USING THE CONTOUR TREE AND ITERATIVE CLOSEST POINT ALGORITHM

  • Lee, Jae-Bin;Han, Dong-Yeob;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.500-503
    • /
    • 2006
  • To adjust the discrepancy between Light Detection and Ranging (LIDAR) strips, previous researches generally have been conducted using conjugate features, which are called feature-based approaches. However, irrespective of the type of features used, the adjustment process relies upon the existence of suitable conjugate features within the overlapping area and the ability of employed methods to detect and extract the features. These limitations make the process complex and sometimes limit the applicability of developed methodologies because of a lack of suitable features in overlapping areas. To address these drawbacks, this paper presents a methodology using area-based algorithms. This approach is based on the scheme that discrepancies make complex the local height variations of LIDAR data whithin overlapping area. This scheme can be helpful to determine an appropriate transformation for adjustment in the way that minimizes the geographical complexity. During the process, the contour tree (CT) was used to represent the geological characteristics of LIDAR points in overlapping area and the Iterative Closest Points (ICP) algorithm was applied to automatically determine parameters of transformation. After transformation, discrepancies were measured again and the results were evaluated statistically. This research provides a robust methodology without restrictions involved in methods that employ conjugate features. Our method also makes the overall adjustment process generally applicable and automated.

  • PDF

3D LIDAR Based Vehicle Localization Using Synthetic Reflectivity Map for Road and Wall in Tunnel

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Song, Jong-Hwa;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.

EXARCTION OF INDIVIDUAL TREE CHARACTERISTIC BY USING AIRBORNE LIDAR DATA

  • Hong, Sung-Hoo;Lee, Seung-Ho;Cho, Hyun-Kook;Nguyen, Dinh-Tai;Kim, Choen
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.642-645
    • /
    • 2007
  • Mounted in aircraft, LiDAR (Light Detection And Ranging) technology uses pulses of light to collect data about the terrain below. The main objective of this study was to extract reliable the individual tree and analysis techniques to facilitate the used LiDAR data for estimating tree crown diameter by measuring individual trees identifiable on the three dimensional LiDAR surface. In addition, this study can be quantitative analysis of individual tree through the canopy parameter.

  • PDF

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

An Adaptive ROI Decision for Real-time Performance in an Autonomous Driving Perception Module (자율주행 인지 모듈의 실시간 성능을 위한 적응형 관심 영역 판단)

  • Lee, Ayoung;Lee, Hojoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.20-25
    • /
    • 2022
  • This paper represents an adaptive Region of Interest (ROI) decision for real-time performance in an autonomous driving perception module. Since the whole automated driving system consists of numerous modules and subdivisions of module occur, it is necessary to consider the characteristics, complexity, and limitations of each module. Furthermore, Light Detection And Ranging (Lidar) sensors require a considerable amount of time. In view of these limitations, division of submodule is inevitable to represent high real-time performance for stable system. This paper proposes ROI to reduce the number of data respect to computation time. ROI is set by a road's design speed and the corresponding ROI is applied differently to each vehicle considering its speed. The simulation model is constructed by ROS, and overall data analysis is conducted by Matlab. The algorithm is validated using real-time driving data in urban environment, and the result shows that ROI provides low computational costs.

An Automatic Extraction Algorithm of Structure Boundary from Terrestrial LIDAR Data (지상라이다 데이터를 이용한 구조물 윤곽선 자동 추출 알고리즘 연구)

  • Roh, Yi-Ju;Kim, Nam-Woon;Yun, Kee-Bang;Jung, Kyeong-Hoon;Kang, Dong-Wook;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • In this paper, automatic structure boundary extraction is proposed using terrestrial LIDAR (Light Detection And Ranging) in 3-dimensional data. This paper describes an algorithm which does not use pictures and pre-processing. In this algorithm, an efficient decimation method is proposed, considering the size of object, the amount of LIDAR data, etc. From these decimated data, object points and non-object points are distinguished using distance information which is a major features of LIDAR. After that, large and small values are extracted using local variations, which can be candidate for boundary. Finally, a boundary line is drawn based on the boundary point candidates. In this way, the approximate boundary of the object is extracted.

Object Detection and Localization on Map using Multiple Camera and Lidar Point Cloud

  • Pansipansi, Leonardo John;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.422-424
    • /
    • 2021
  • In this paper, it leads the approach of fusing multiple RGB cameras for visual objects recognition based on deep learning with convolution neural network and 3D Light Detection and Ranging (LiDAR) to observe the environment and match into a 3D world in estimating the distance and position in a form of point cloud map. The goal of perception in multiple cameras are to extract the crucial static and dynamic objects around the autonomous vehicle, especially the blind spot which assists the AV to navigate according to the goal. Numerous cameras with object detection might tend slow-going the computer process in real-time. The computer vision convolution neural network algorithm to use for eradicating this problem use must suitable also to the capacity of the hardware. The localization of classified detected objects comes from the bases of a 3D point cloud environment. But first, the LiDAR point cloud data undergo parsing, and the used algorithm is based on the 3D Euclidean clustering method which gives an accurate on localizing the objects. We evaluated the method using our dataset that comes from VLP-16 and multiple cameras and the results show the completion of the method and multi-sensor fusion strategy.

  • PDF

Visualization Of Aerial Color Imagery Through Shadow Effect Correction

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Yang, In-Tae;Lee, Kangwon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.64-72
    • /
    • 2004
  • Correction of shadow effects is critical step for image interpretation and feature extraction from aerial imagery. In this paper, an efficient algorithm to correct shadow effects from aerial color imagery is presented. The following steps have been performed to remove the shadow effect. First, the shadow regions are precisely located using the solar position and the height of ground objects derived from LIDAR (Light Detection and Ranging) data. Subsequently, segmentation of context regions is implemented for accurate correction with existing digital map. Next step, to calculate correction factor the comparison between the context region and the same non-shadowed context region is made. Finally, corrected image is generated by correcting the shadow effect. The result presented here helps to accurately extract and interpret geo-spatial information from aerial color imagery

  • PDF

Topographic Information Extraction from Kompsat Satellite Stereo Data Using SGM

  • Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.315-322
    • /
    • 2019
  • DSM (Digital Surface Model) is a digital representation of ground surface topography or terrain that is widely used for hydrology, slope analysis, and urban planning. Aerial photogrammetry and LiDAR (Light Detection And Ranging) are main technology for urban DSM generation but high-resolution satellite imagery is the only ingredient for remote inaccessible areas. Traditional automated DSM generation method is based on correlation-based methods but recent study shows that a modern pixelwise image matching method, SGM (Semi-Global Matching) can be an alternative. Therefore this study investigated the application of SGM for Kompsat satellite data of KARI (Korea Aerospace Research Institute). Firstly, the sensor modeling was carried out for precise ground-to-image computation, followed by the epipolar image resampling for efficient stereo processing. Secondly, SGM was applied using different parameterizations. The generated DSM was evaluated with a reference DSM generated by the first pulse returns of the LIDAR reference dataset.