• Title/Summary/Keyword: Light Curve

Search Result 566, Processing Time 0.02 seconds

The Dependence of Type Ia Supernovae Luminosities on the Morphologies of Host-Galaxies

  • Kim, Young-Lo;Kang, Yi-Jung;Joe, Young-Hoon;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.69.2-69.2
    • /
    • 2011
  • The discovery of dark energy from Type Ia supernovae (SN Ia) is based on the implicit assumption that the look-back time evolution of SN Ia luminosity, after light-curve corrections, would be negligible. A strong support for this assumption was the apparent insensitivity of SN Ia distances across the host galaxy morphologies. However, Hicken et al. 2009 (H09) shows a systematic difference in the Hubble residual (HR) of $0.144{\pm}0.070$ mag between the E-S0 and Scd/Sd/Irr galaxies, after light-curve corrections. If true, this indicates that the light-curve fitters used by the SN Ia community can not correct for the population age (and therefore the evolution) effect. In order to confirm this, we have combined nearby SN Ia samples and the first-year SDSS-II SN Survey. The SNANA package was used for analyzing SN Ia light-curve, both for the MLCS2k2 and SALT2 fitters. We find a systematic difference in the HR of $0.10-0.13{\pm}0.030$ mag between E-S0 and Scd/Sd/Irr galaxies, which is in agreement with the result of H09, but now at the 3-5 ${\sigma}$ level. Considering the significant difference in the mean age of stellar population between these morphological types, the difference in the HR reported here suggests that the evolution effect of SN Ia luminosity should be considered in the cosmological application of SN Ia data.

  • PDF

NALYSIS OF THE ECLIPSING BINARY SDSS J1021+1744: A WDMS SYSTEM WITH UNUSUAL DIPS

  • CHANTHORN, KHUNAGORN;SANGUANSAK, NUANWAN;IRAWATI, PUJI;DHILLON, VIK S.;MARSH, TOM R.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.219-221
    • /
    • 2015
  • We present our recent observations of SDSS J102102.25+174439.9, a new eclipsing white dwarf - main sequence WDMS binary with an orbital period of 0.14 days. This system belongs to the post common-envelope binary group as shown by the spectrum from the Sloan Digital Sky Survey. We obtained our data using the ULTRASPEC instrument installed on the 2.4-m telescope at the Thai National Observatory (TNO). Our multi-band observations reveal an unusual and persistent drop in brightness after the primary eclipse. These dips, which appear to show variations in amplitude, also have a complex shape that changes within days. Dips in WDMS systems have been observed on only one other occasion, in the light curve of QS Vir prior to the eclipse of the white dwarf. The dips in SDSS J1021+1744 are unique because they are present at different wavelengths and they occur approximately at similar phases. Hosting a DA white dwarf and an M4 companion star, this system is known to be the only WDMS to show these kind of dips in its light curve. It is possible that these dips are caused by ejected materials from an active companion star, such as in QS Vir. The light curve in the g' filter exhibits deep and narrow features, implying that the material which passes in front of the white dwarf in SDSS J1021 must be dense and small in size. Furthermore, we try to constrain the stellar and orbital parameters of SDSS J1021+1744 using the Binary Maker 3 software. We use g' and r' data for our light curve analysis to have a better approximation for the red dwarf star.

Intensive Monitoring Survey of Nearby Galaxies (IMSNG) : Constraints on the Progenitor System of a Type Ia Supernova SN 2019ein from Its Early Light Curve

  • Lim, Gu;Im, Myungshin;Kim, Dohyeong;Paek, Gregory S.H.;Choi, Changsu;Kim, Sophia;Hwang, Sungyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2020
  • The progenitor of Type Ia supernovae (SNe Ia) is mainly believed to be a carbon/oxygen white dwarf (WD) with non-degenerate (single degenerate) or another WD companion (double degenerate). However, there is little observational evidence of their progenitor system. Recent studies suggest that shock-breakout cooling emission after the explosion can constrain the size of the progenitor system. To do so, we obtained a optical/Near-IR light curve of SN 2019ein, a normal but slightly sub-luminous type Ia supernova, from the very early phase using our high-cadence observation of Intensive Monitoring Survey of Nearby Galaxies (IMSNG). Assuming the expanding fireball model, the simple power-law fitting of the early part of the light curve gives power indices of 1.91 (B) and 2.09 (R) implying radioactive decay of 56Ni is the dominant energy source. By comparison with the expected light curve of the cooling emission, the early observation provides us an upper limit of the companion size of R∗≤1R⊙. This result suggests that we can exclude a large companion such as red giants, which is consistent with the previous study.

  • PDF

Enhancement of Carbon Dioxide Fixation by Alteration of Illumination during Chlorella Vulgaris-Buitenzorg's Growth

  • Wijanarko Anondho;Dianursanti Dianursanti;Gozan Misri;Andika Sang Made Krisna;Widiastuti Paramita;Hermansyah Heri;Witarto Arief Budi;Asami Kazuhiro;Soemantojo Roekmijati Widaningroem;Ohtaguchi Kazuhisa;Koo Song-Seung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.484-488
    • /
    • 2006
  • Alteration of illumination with optimum carbon dioxide fixation-based curve in this research successfully enhanced the $CO_{2}-fixation\;(q_CO_{2}$ capability of Chlorella vulgaris Buitenzorg cultivated in a bubble column photo bioreactor. The level of $CO_{2}$ fixation was up to 1.91 times that observed from cultivation with intensification of illumination on an optimum growth-based curve. During 144 h of cultivation, alteration of light intensity on an optimum $CO_{2}-fixation-based$ curve produced a $q_CO_{2}$ of $12.8\;h^{-1}$. Meanwhile, alteration of light intensity with a growth-based curve only produced a $q_CO_{2}$ of $6.68\;h^{-1}$. Increases in light intensity based on a curve of optimum $CO_{2}-fixation$ produced a final cell concentration of about 5.78 g/L. Both cultivation methods were carried out under ambient pressure at a temperature of $29^{\circ}C$ with a superficial gas velocity of $2.4\;m/h(U_{G}$. Cells were grown on Beneck medium in a 1.0 L Bubble Column Photo bioreactor illuminated by a Phillips Halogen Lamp (20 W/12 V/50 Hz). The inlet gas had a carbon dioxide content of 10%.

Photographic Time of Minimum Light for VV Orionis

  • Lee, Woo-Baik;Nha, Il-Seong
    • Journal of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.25-27
    • /
    • 1975
  • A time of minimum light for VV Orionis has been determined photographically using techniques developed by Jeong. The observed time of minimum light shows that VV Ori exhibits a constant orbital period. The O-C computed with the light elements given by Eaton is found to be $-0^d$, 0070. An attempt to correct for night-to-night shifts for plates taken on three nights in February and March 1975, was unsuccessful and thus the complete light curve initially planned was not obtained.

  • PDF

A NEW CHANNEL TO SEARCH FOR EXTRA-SOLAR SYSTEMS WITH MULTIPLE PLANETS VIA GRAVITATIONAL MICROLENSING

  • HAN CHEONGHO;PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Gaudi, Naber & Sackett pointed out that if an event is caused by a lens system containing more than two planets, all planets will affect the central region of the magnification pattern, and thus the existence of the multiple planets can be inferred by detecting additionally deformed anomalies from intensive monitoring of high magnification microlensing events. Unfortunately, this method has important limitations in identifying the existence of multiple planets and determining their parameters (the mass ratio and the instantaneous projected separation) due to the degeneracy of the resulting light curve anomalies from those induced by a single planet and the complexity of multiple planet lensing models. In this paper, we propose a new channel to search for multiple planets via microlensing. The method is based on the fact that the lensing light curve anomalies induced by multiple planets are well approximated by the superposition of those of the single planet systems where the individual planet-primary pairs act as independent lens systems. Then, if the source trajectory passes both of the outer deviation regions induced by the individual planets, one can unambiguously identify the existence of the multiple planets. We illustrate that the probability of successively detecting light curve anomalies induced by two Jovian-mass planets located in the lensing zone through this channel will be substantial. Since the individual anomalies can be well described by much simpler single planet lensing models, the proposed method has an important advantage of allowing one to accurately determine the parameters of the individual planets.

LONG-TERM X-RAY VARIABILITIES OF THE SEYFERT GALAXY MCG-2-58-22 : SECULAR FLUX DECREASE AND FLARES

  • CHOI CHUL-SUNG;DOTANI TADAYASU;CHANG HEON- YOUNG;YI INSU
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • We have studied the long-term X-ray light curve (2-10 keV) of the luminous Seyfert 1 galaxy MCG-2-58-22 by compiling data, from various X-ray satellites, which together cover more than 20 years. We have found two distinct types of time variations in the light curve. One is a gradual and secular decrease of the X-ray flux, and the other is the episodic increase of X-ray flux (or flare) by a factor of 2-4 compared with the level expected from the secular variation. We detected 3 such flares in total; a representative duration for the flares is $\~$2 years, with intervening quiescent intervals lasting $\~$6-8 years. We discuss a few possible origins for these variabilities. Though a standard disk instability theory may explain the displayed time variability in the X-ray light curve, the subsequent accretions of stellar debris, from a tidal disruption event caused by a supermassive black hole in MCG-2-58-22, cannot be ruled out as an alternative explanation.

THE UPDATED ORBITAL EPHEMERIS OF DIPPING LOW MASS X-ray BINARY 4U 1624-49

  • LIAO, NAI-HUI;CHOU, YI;HSIEH, HUNG-EN;CHUANG, PO-SHENG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.593-594
    • /
    • 2015
  • We present our analysis results for an updated orbital ephemeris for the dipping low mass X-ray binary 4U 1624-49, using the light curve collected by the All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer (RXTE) and the Monitor of All-Sky X-ray Image (MAXI). To make clear dip profiles, the light curve from the ASM and the MAXI were divided into ten 500d segments and four 400d segments for ASM and MAXI light curves, respectively, and folded with the linear ephemeris proposed by Smale et al. (2001). The phases of dip centers were determined by the method adopted from Hu et al. (2008). The phase drift was then fitted with a linear function. We obtained an updated orbital period of 0.869896(1) d and a phase zero epoch of JD 2450088.6618(57). No clear orbital period derivative is detected with a 2-sigma upper limit of $1.4{\times}10^{-6}(yr)^{-1}$ from a quadratic curve fitting of the dip phase evolution.

Observation of transiting exoplanet TrES-2b at Maidanak Observatory in Uzbekistan

  • Yang, Yun-A;Lee, Sang-Gak;Kang, Won-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.28.1-28.1
    • /
    • 2011
  • We observed the transiting exoplanet, TrES-2b, with 1.5m telescope at Maidanak Observatory in Uzbekistan. We observed TrES-2 system for six nights, which contained two orbital periods of the planet. Therefore, we obtained the entire light curve of TrES-2b, which covered not only the whole primary transit containing both ingress and egress part, but also non-transit region. We used both R and Y band filters. Especially, Y filter is used first for transit observation and covers relatively longer wavelength ($1.02{\mu}m$ of center wavelength), to provide the light curve less affected by limb darkening. By fitting best model light curve for the obtained one, we determined these observables, transit depth, transit length, and planet's orbital period, which led to the determination of five physical parameters, stellar radius R*, stellar mass M*, inclination i, semi-major axis a, and planetary radius Rp. We will discuss of these results.

  • PDF

Modeling of Microalgal Photosynthetic Activity Depending on Light Intensity, Light Pathlength and Cell Density (빛의 세기, 투과거리 및 세포농도에 따른 미세조류의 광합성 활성 모델링)

  • Yun, Yeong-Sang;Park, Jong-Mun
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.414-421
    • /
    • 1999
  • The influenced of light intensity, cell density, and light pathlength on photosynthetic activity of Chlorella vulgaris were investigated. Since the light respon curve varied according to reaction conditions, the parameters estimated from nonlinear regression were proved to be apparent and could not be applied to various situations. The light response model incorporating the light penetration through the microalgal suspension was developed based upon the spatial distribution of the photosynthetic activity. This model showed a good agreement with experimental data at different cell densities and light intensities. Using the model the effects of cell density and light pathlenth were simulated and some dicussions about optimization of operation conditions of photobioreactors were carried out. Concludingly, the developed model can be useful for predicting microalgal photosynthesis and for determining the optimal operating conditions.

  • PDF