• Title/Summary/Keyword: Light Condition

Search Result 2,472, Processing Time 0.029 seconds

A Study on the Angular Characteristics of Photopolymer-based Hologram Recording and Reproducing Light

  • Kwang-pyo, Hong;Jiwoon, Lee;Lee-hwan, Hwang;Soon-chul, Kwon;Seunghyun, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.460-469
    • /
    • 2022
  • Increasing interest in the metaverse world these days, interest in realistic content such as 3D displays is growing. In particular, hologram images seen in movies provide viewers with an immersive display that cannot be seen in conventional 2D images. Since the first discovery of holography by Dennis Gabor in 1948, this technology has developed rapidly. Spatially, this beginning of technology like Optical hologram called analog hologram and Digital hologram such as computer-generated hologram (CGH). In analog and digital holograms, a recording angle and a recording wavelength are having important role when reproducing and display hologram. In the hologram, diffraction of light causes by unexpected formed by the synthesis from interference with object and reference light. When recording, the incident light information and mismatched reproduction light reconstruct the hologram in an undesirable direction. Reproduction light that is out of sync with incident light information with initial condition of recording will cause reconstructed image in an undesirable direction. Therefore, we analyze the holographic interference pattern generated by hologram recording in volume holograms using photopolymer and analyze the characteristics that vary depending on the angle of the reproduced light. This is expected to be used as a basic research on various holographic application that may cause as holograms are applied to industries in the future.

Light environment and physiological response of Panax ginseng I. Experience on light in natural habitat,through cultivation under forest and artificial shade, and change of light control technique (인삼의 광환경과 생리반응 I.자생지. 임간 및 일복 재배에서 광경험과 광조절 방법의 변천)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.172-192
    • /
    • 1983
  • Light environment and growth of Panax ginseng In habitat and cultivation under natural shade were renewed. Grower's experiences on ginseng stand In relation to light environment were assessed. Change of shading method and grower's concepts on light requirement of ginseng plant in Korea, Manchuria and Japan was counted. Growth of wild ginseng was better under rich light. Optimum crown density index appeared to be 0.7 In natural habitat and 0.4 to 0.7 for the cultivation in forest. Change of light Intensity in forest was greatest in May and reached near to constant value (from 40% to 3% for broad leaf deciduous forest and loom 4% to 2% for pine forest). Insufficient light condition induced long and thin stem, poor flowering and seed bearing, and sequent dormancy. Relation between light and ginseng strand was not clear but light Interception with cool weather was effective. Topography and orientation of bed have been deeply considered for light environment. Panel or bark of won were used for shading in deep forest manly In Manchuria while reed blind and straw thatch were used in Korea. Kinds and number of shades material and seasonal or daily schedule have been simplified probably by labor pressure due to eulargement of plantation. Post height has been greater while width of roof, bed and ditch has changed lisle. Scientific survey in the past omitted important light control methods (complete light hardening etc) which has been practiced in specific areas. The concept and technique of light control in the past in Korea were delicate and intensive including the control of temperature and moisture. For the application of old concept in modem cultivation precise Investigation of the technique including the measurement of light, temperature and moisture is needed.

  • PDF

Effects of monochromatic lights on the growth performance, carcass characteristics, eyeball development, oxidation resistance, and cecal bacteria of Pekin ducks

  • Hua, Dengke;Xue, Fuguang;Xin, Hairui;Zhao, Yiguang;Wang, Yue;Xiong, Benhai
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.931-940
    • /
    • 2021
  • Objective: Light is a significant component of housing environment in commercial poultry industry. This study was conducted to investigate whether Pekin ducks perform better under monochromatic lights than under white light with respect to their growth performance, carcass quality, eyeball development, oxidation resistance, and cecal bacterial communities. Methods: A total of 320 one-day-old male Pekin ducklings were randomly distributed into five rooms with different light treatments, white, red, yellow, green, and blue light. Each room consisted of 4 replicated pens with 16 ducklings per pen. Results: Blue light significantly decreased fat deposition by decreasing abdominal fat. Long wavelength light, such as red, green, and yellow light, considerably increased the back-to-front eyeball diameter and the red light potentially enlarged the side-to-side eyeball diameter. Besides, the blue light had adverse effects on the oxidation resistance status in terms of increasing the product malonaldehyde of lipid oxidation and decreasing the plasma concentration of total superoxide dismutase. The phyla of Firmicutes had the greatest abundance in the green and blue treatments, while Bacteroidetes in blue treatment was the least. The genus of Faecalibacterium was significantly lower under the red light. Conclusion: The high risk of cecal health status and decreased anti-oxidation activity were observed under blue light. Red, yellow, and green light might increase the risk of oversized eyeball and cecal illness. Therefore, monochromatic lights compared to white light did not show advantages on the performance of housing ducks, it turns out that the white light is the best light condition for grow-out ducks.

Effects of Light Color on Energy Expenditure and Behavior in Broiler Chickens

  • Kim, Nara;Lee, Sang-Rak;Lee, Sang-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1044-1049
    • /
    • 2014
  • This study was conducted in order to investigate whether the presence of light or different colors of light would influence the energy expenditure and behavior of broiler chickens. Eight 8-week-old broiler chickens were adapted to a respiration chamber (Length, 28.5 cm; Height, 38.5 cm; Width, 44.0 cm) for one week prior to the initiation of the experiment. In experiment 1, energy expenditure and behavior of the chickens were analyzed in the presence or absence of light for four days. Chickens were exposed to 6 cycles of 2 h light/2 h dark period per day. In experiment 2, the broiler chickens that had been used in experiment 1 were used to evaluate the effect of 4 different wavelength light-emitting diodes (LEDs) on the energy expenditure and behavior of broiler chickens. The LEDs used in this study had the following wavelength bands; white (control), red (618 to 635 nm), green (515 to 530 nm) and blue (450 to 470 nm). The chickens were randomly exposed to a 2-h LED light in a random and sequential order per day for 3 days. Oxygen consumption and carbon dioxide production of the chickens were recorded using an open-circuit calorimeter system, and energy expenditure was calculated based on the collected data. The behavior of the chickens was analyzed based on following categories i.e., resting, standing, and pecking, and closed-circuit television was used to record these behavioral postures. The analysis of data from experiment 1 showed that the energy expenditure was higher (p<0.001) in chickens under light condition compared with those under dark condition. The chickens spent more time with pecking during a light period, but they frequently exhibited resting during a dark period. Experiment 2 showed that there was no significant difference in terms of energy expenditure and behavior based on the color of light (white, red, green, and blue) to which the chickens were exposed. In conclusion, the energy expenditure and behavior of broiler chickens were found to be strongly affected by the presence of light. On the other hand, there was no discernible difference in their energy expenditure and behavior of broiler chickens exposed to the different LED lights.

Effects of Light Intensity on Photosynthetic Activity of Shade Tolerant and Intolerant Tree Species (광도(光度)가 내음성(耐陰性)이 서로 다른 3수종(樹種)의 광합성(光合成) 생리(生理)에 미치는 영향(影響))

  • Kim, Pan-Gi;Yi, Yong-Sub;Chung, Dong-Jun;Woo, Su-Young;Sung, Joo Han;Lee, Eun Ju
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.476-487
    • /
    • 2001
  • In this study, three tree species (Populus euramericana, Kalopanax pictus and Quercus serrata) exhibiting different levels of shade tolerance were employed to investigate photosynthetic responses to the lower light condition on forest floors. Chlorophyll contents, spectral properties and photosynthetic characteristics were examined by using the tree species grown under high light intensity (PPFD $920{\mu}mol\;m^{-2}s^{-1}$) or low light intensity (PPFD $80{\mu}mol\;m^{-2}s^{-1}$). Plants grown under the low light intensity tended to have reduced leaf area, chlorophyll content per unit leaf area, light absorption and respiration in the shade intolerant tree species of P. euramericana. However, the shade tolerant species K. pictus and Q. serrata showed increased leaf area, chlorophyll content and net apparent quantum yield. Therefore, light absorption and light utilization efficiency were improved under the low light intensity. Also shade tolerant species maintained activities of photosystems and $CO_2$ fixation systems with little changes in low light intensity condition.

  • PDF

Effects of the Light Source of LEDs on the Physiological and Flowering Response of Endangered Plant Silene capitata Kom. (LED광질에 따른 분홍장구채(Silene capitata Kom.)의 생리 및 개화 반응)

  • Park, Jae Hoon;Lee, Eung Pill;Lee, Soo In;Jang, Rae Ha;An, Kyung Ho;You, Young Han
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.5
    • /
    • pp.821-828
    • /
    • 2016
  • We examed physiological and flowering response of S. capitata, the endangered plant in Korea, under LED light conditions in plant factory to cultivate artificially for conservation. We cultivated S. capitata and measured its physiological responses and the number of flowers under red, blue, white, red+far-red mixed, red+blue mixed, and red+blue+white mixed light. The results showed that its photosynthetic rate and chlorophyll content were recorded relatively high in red+blue+white and red+blue mixed light respectively. Transpiration rate and stomatal conductance appeared relatively high in the white single light while water use efficiency was no difference. Photochemical efficiency of photochemical photosystem II by minimum and maximum chlorophyll fluorescence was the highest in the red+blue+white mixed light condition than other ones. The number of flowers of S. capitata was at its peak under the red light or red+far-red mixed light. Therefore, we conclude that the most efficient way to grow for flowering of S. capitata is to provide red light or red+far-red mixed light in the plant factory.

The effects of LEDs and duty ratio on the growth and physiological responses of Silene capitata Kom., endangered plant, in a plant factory

  • Park, Jae-Hoon;Lee, Eung-Pill;Han, Young-Sub;Lee, Soo-In;Cho, Kyu-Tae;Hong, Yong-Sik;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.174-182
    • /
    • 2018
  • Background: In this study, we observed their growth and physiological responses using a variety of duty ratio under the mixed light using red, blue, and white lights. The red+blue mixed light was treated with 95%, 90%, 85%, 80%, and 75% duty ratios and red+blue+white mixed light with 85% and 70% duty ratios. We examined the width and length of leaves, total number of leaves, and number of shoots to examine their growth responses. The physiological responses were studied by measuring their photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, chlorophyll content, and fluorescence ($F_o$, $F_m$, and $F_v/F_m$). Results: We found that lower duty ratio caused the length and width of the leaves to grow longer under red+blue mixed light but that it did not cause any difference in the red+blue+white mixed light condition. In addition, there was no difference in the number of leaves and shoots among all treatments. In the red+blue mixed light condition, the photosynthetic rate was no difference, but both transpiration rate and stomatal conductance were the highest at 95% duty ratio than in other ratios. Water use efficiency pattern was similar to that of photosynthetic rate; water use efficiency was no difference. Chlorophyll content was the highest at 95% duty ratios, and it was the least at 90%, 85%, and 75% duty ratio. $F_o$ and $F_m$ values were relatively high at 85% and 80% duty ratio and low at 90% duty ratio while $F_v/F_m$ showed no difference. Conclusions: Under the red+blue+white mixed light, all physiological items showed no difference between 70 and 85% treatments. But, photosynthetic rate, water use efficiency, chlorophyll content, and $F_v/F_m$ were relatively greater in the red+blue+white mixed light than in the red+blue mixed light. Therefore, red+blue+white mixed light treated with 70% duty ratio could lessen the environmental stress and save more power when cultivating Silene capitata in a plant factory.

Study of Optimal Light Scattering Pattern Design for Flat Lighting Device using Glass Light Guide (유리도광체를 이용한 평판조명용 광확산패턴의 최적설계 연구)

  • Han, Jeong-Min;Kim, Won-Bae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.242-246
    • /
    • 2017
  • In this study, it was investigated about optical simulation in high brightness and high uniformity general lighting using glass light guide plate. And we adopt edge-light emission type light plate. Edge-light type lighting has been used LCD application, especially note PC or smart phone backlight unit. Because it had the good properties such as slim shape and light weight. We thought this type was suitable for general lighting application such as wall attached type or ceiling mount type. But many of edge-light type lighting had problems. It called slanted output light rays. That was main key parameter how could control the direction of output light rays. We investigated the solution of this problems, using ray tracing method, we recognized the major fact of the solution relied on the geometric structure of diffusing dot shape. We set the conditions of aspect ratio in diffusing dot shape such as 0.5 to 1. And, at first, we designed diffusing dots shape based on the results of optical simulation and made specimen. as above condition, and acquired good result in confirming dots shape such as the value of the output rays's peak angle was around 75 degrees. And good light distribution characteristics were measured by slated spectro-radiometer. It was shown that the effective ways of designing light distribution characteristics using optical simulation such as ray tracing linear method for making general lighting using glass light guide plate.

Effect of LED Light on Primordium Formation, Morphological Properties, Ergosterol Content and Antioxidant Activity of Fruit Body in Pleurotus eryngii (LED광원이 큰느타리버섯 자실체의 발생, 생육, 에르고스테롤 함량 및 항산화활성에 미치는 영향)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Kim, Jeong-Han;Ju, Young-Cheol
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.175-179
    • /
    • 2011
  • Light wavelength is the major factor of fruit body development associated with mushroom cultivation, but its wavelength range in Pleurotus eryngii is poorly understood. Using four kinds of light emitting diode (LED) including blue (475 nm), green (525 nm), yellowed (590 nm) and red (660 nm), we investigated to elucidate suitable light wavelength during primordium formation and fruit body development of P. eryngii on bottle cultivation. Primordia formation did not occur in blue light and red light. The morphological properties of fruit body in fluorescent lamp and blue light irradiation were showed thicker and larger pileus than those in other LEDs. However, length of stipe in fluorescent lamp and blue light was shorter than that of other LEDs. The DPPH radical was high in blue light, green light, and yellow light except for red light, and the polyphenol was high in four kinds of LED sources. And ergosterol was the highest in the green light. Thus, the high-quality mushroom production of P. eryngii is possible to green light condition considering productivity and functional materials.

Effects of Light Intensity, Nutrient Solution Compositions before Harvest and the Time of Nutrient Solution Removal on Nitrate Contents in Hydroponically-Grown Leaf Lettuces in Closed Plant Production System (폐쇄형 식물생산시스템에서 광도, 수확 전 양액조성 및 양액결제시기가 잎상추의 체내 질산염 함량에 미치는 영향)

  • Yeo, Kyung-Hwan;Choi, Gyeong-Lee;Lee, Jung-Sup;Lee, Jae-Han;Park, Kyoung-Sub;Kim, Jin-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • The nitrate ($NO_3{^-}$) accumulation of hydroponically grown leafy vegetables may increase in the condition of a closed-type plant production system with low light intensity due to low activity of enzymes involved in nitrogen assimilation and the use of $NO_3-N$ as major nitrogen source. The objective of this study is to investigate the effects of light intensities, nutrient solution compositions and the time of nutrient solution removal before harvest on nitrate contents of hydroponically-grown lettuces in a closed plant production system. The reduction of nitrate contents in leafy lettuces 'Cheongchima' was higher in the treatments of 'TW' (nutrient solution removal) and '$(NH_4)_2CO_3$' (use of ammonium carbonate as nitrogen source) than those in other treatments, which significantly lowered fresh weight and leaf area of the plants. In the light intensity of $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the nitrate content was effectively reduced without causing any growth retardation, by substitution of the nutrient solution composition that $NO_3-N$ was removed ('$NO_3-N$ removal' treatment) or the half strength of standard nutrient solution was applied ('1/2 S' treatment), for 7days before harvest. The effects of light intensity and the time of nutrient solution removal before harvest on growth and nitrate contents in leafy lettuces were investigated. The nitrate contents in leaves under the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ before nutrient solution removal were lower than those of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The removal of nutrient solution for 7 days before harvest quickly reduced the amount of nitrates in leaves in all the light intensities with a greater degree under the $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light condition, while the 7 days-removal with both 200 and $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light conditions caused decrease in 16~31% of leaf area and 20~35% of fresh weight, compared to the 3 days-removal treatment. The nitrate contents were greatly reduced from 3,018 to 1,035 in $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and 2,021 to 480 ppm in the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, with the nutrient solution removal for 3 days before harvest, without causing any deterioration in growth and product quality. The vitamin C contents in leaves were higher in the treatment of nutrient solution removal for both 3 and 5 days before harvest with the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ than those in the light condition of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.