• 제목/요약/키워드: Ligand-docking

검색결과 95건 처리시간 0.019초

단백질 접촉 영역의 기하학적 특성 가시화 (Visualization of Geometric Features in the Contact Region of Proteins)

  • 김구진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권10호
    • /
    • pp.421-426
    • /
    • 2019
  • 본 논문에서는 단백질 복합체에서 단백질 사이의 접촉 영역이 갖는 기하학적 특징을 가시화하는 방법을 제안한다. 단백질 또는 리간드가 요철이 있는 곡면으로 표현될 때, 두 곡면이 서로 접하면서 교차하지 않는 성질을 형태 상보성이라 한다. 단백질-단백질 또는 단백질-리간드 도킹 연구에서 형태 상보성과 화학적인 성질, 엔트로피 등이 접촉 영역의 발견에 중요한 역할을 한다는 것을 볼 수 있다. 일반적으로 형태 상보성이 높은 영역을 발견한 뒤, 이 영역에 속한 아미노산들의 잔기 극성 및 소수성 등을 이용하여 접촉 영역을 예측한다. 접촉 영역을 예측하기 위한 연구에서는 기존에 알려진 복합체에서 접촉 영역이 갖는 기하학적인 특징을 조사하는 작업이 필요하며, 이를 위해 기하학적인 특징을 가시화하는 작업은 필수적이다. 본 논문에서는 단백질 복합체에서 접촉 영역을 발견하고, 두 개의 단백질 각각의 접촉 면에 속한 근거리의 정점들의 기하학적인 특징을 법선 벡터 및 평균 곡률로써 가시화하는 방법을 제안한다.

Crystal Structure of LysB4, an Endolysin from Bacillus cereus-Targeting Bacteriophage B4

  • Hong, Seokho;Son, Bokyung;Ryu, Sangryeol;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.79-86
    • /
    • 2019
  • Endolysins are bacteriophage-derived enzymes that hydrolyze the peptidoglycan of host bacteria. Endolysins are considered to be promising tools for the control of pathogenic bacteria. LysB4 is an endolysin produced by Bacillus cereus-infecting bacteriophage B4, and consists of an N-terminal enzymatic active domain (EAD) and a C-terminal cell wall binding domain (CBD). LysB4 was discovered for the first time as an L-alanoyl-D-glutamate endopeptidase with the ability to breakdown the peptidoglycan among B. cereus-infecting phages. To understand the activity of LysB4 at the molecular level, this study determined the X-ray crystal structure of the LysB4 EAD, using the full-length LysB4 endolysin. The LysB4 EAD has an active site that is typical of LAS-type enzymes, where $Zn^{2+}$ is tetrahedrally coordinated by three amino acid residues and one water molecule. Mutational studies identified essential residues that are involved in lytic activity. Based on the structural and biochemical information about LysB4, we suggest a ligand-docking model and a putative endopeptidase mechanism for the LysB4 EAD. These suggestions add insight into the molecular mechanism of the endolysin LysB4 in B. cereus-infecting phages.

Exploring the Catalytic Significant Residues of Serine Protease Using Substrate-Enriched Residues and a Peptidase Inhibitor

  • Khan, Zahoor;Shafique, Maryam;Zeb, Amir;Jabeen, Nusrat;Naz, Sehar Afshan;Zubair, Arif
    • 한국미생물·생명공학회지
    • /
    • 제49권1호
    • /
    • pp.65-74
    • /
    • 2021
  • Serine proteases are the most versatile proteolytic enzymes with tremendous applications in various industrial processes. This study was designed to investigate the biochemical properties, critical residues, and the catalytic potential of alkaline serine protease using in-silico approaches. The primary sequence was analyzed using ProtParam, SignalP, and Phyre2 tools to investigate biochemical properties, signal peptide, and secondary structure, respectively. The three-dimensional structure of the enzyme was modeled using the MODELLER program present in Discovery Studio followed by Molecular Dynamics simulation using GROMACS 5.0.7 package with CHARMM36m force field. The proteolytic potential was measured by performing docking with casein- and keratin-enriched residues, while the effect of the inhibitor was studied using phenylmethylsulfonyl fluoride, (PMSF) applying GOLDv5.2.2. Molecular weight, instability index, aliphatic index, and isoelectric point for serine protease were 39.53 kDa, 27.79, 82.20 and 8.91, respectively. The best model was selected based on the lowest MOLPDF score (1382.82) and DOPE score (-29984.07). The analysis using ProSA-web revealed a Z-score of -9.7, whereas 88.86% of the residues occupied the most favored region in the Ramachandran plot. Ser327, Asp138, Asn261, and Thr326 were found as critical residues involved in ligand binding and execution of biocatalysis. Our findings suggest that bioengineering of these critical residues may enhance the catalytic potential of this enzyme.

e-Pharmacophore modeling and in silico study of CD147 receptor against SARS-CoV-2 drugs

  • Nisha Kumari Pandit;Simranjeet Singh Mann;Anee Mohanty;Sumer Singh Meena
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.17.1-17.12
    • /
    • 2023
  • Coronavirus has left severe health impacts on the human population, globally. Still a significant number of cases are reported daily as no specific medications are available for its effective treatment. The presence of the CD147 receptor (human basigin) on the host cell facilitates the severe acute respiratory disease coronavirus 2 (SARS-CoV-2) infection. Therefore, the drugs that efficiently alter the formation of CD147 and spike protein complex could be the right drug candidate to inhibit the replication of SARS-CoV-2. Hence, an e-Pharmacophore model was developed based on the receptor-ligand cavity of CD147 protein which was further mapped against pre-existing drugs of coronavirus disease treatment. A total of seven drugs were found to be suited as pharmacophores out of 11 drugs screened which was further docked with CD147 protein using CDOCKER of Biovia discovery studio. The active site sphere of the prepared protein was 101.44, 87.84, and 97.17 along with the radius being 15.33 and the root-mean-square deviation value obtained was 0.73 Å. The protein minimization energy was calculated to be -30,328.81547 kcal/mol. The docking results showed ritonavir as the best fit as it demonstrated a higher CDOCKER energy (-57.30) with correspond to CDOCKER interaction energy (-53.38). However, authors further suggest in vitro studies to understand the potential activity of the ritonavir.

Impact of NR1I2, adenosine triphosphate-binding cassette transporters genetic polymorphisms on the pharmacokinetics of ginsenoside compound K in healthy Chinese volunteers

  • Zhou, Luping;Chen, Lulu;Wang, Yaqin;Huang, Jie;Yang, Guoping;Tan, Zhirong;Wang, Yicheng;Liao, Jianwei;Zhou, Gan;Hu, Kai;Li, Zhenyu;Ouyang, Dongsheng
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.460-474
    • /
    • 2019
  • Background: Ginsenoside compound K (CK) is a promising drug candidate for rheumatoid arthritis. This study examined the impact of polymorphisms in NR1I2, adenosine triphosphate-binding cassette (ABC) transporter genes on the pharmacokinetics of CK in healthy Chinese individuals. Methods: Forty-two targeted variants in seven genes were genotyped in 54 participants using Sequenom MassARRAY system to investigate their association with major pharmacokinetic parameters of CK and its metabolite 20(S)-protopanaxadiol (PPD). Subsequently, molecular docking was simulated using the AutoDock Vina program. Results: ABCC4 rs1751034 TT and rs1189437 TT were associated with increased exposure of CK and decreased exposure of 20(S)-PPD, whereas CFTR rs4148688 heterozygous carriers had the lowest maximum concentration ($C_{max}$) of CK. The area under the curve from zero to the time of the last quantifiable concentration ($AUC_{last}$) of CK was decreased in NR1I2 rs1464602 and rs2472682 homozygous carriers, while $C_{max}$ was significantly reduced only in rs2472682. ABCC4 rs1151471 and CFTR rs2283054 influenced the pharmacokinetics of 20(S)-PPD. In addition, several variations in ABCC2, ABCC4, CFTR, and NR1I2 had minor effects on the pharmacokinetics of CK. Quality of the best homology model of multidrug resistance protein 4 (MRP4) was assessed, and the ligand interaction plot showed the mode of interaction of CK with different MRP4 residues. Conlusion: ABCC4 rs1751034 and rs1189437 affected the pharmacokinetics of both CK and 20(S)-PPD. NR1I2 rs1464602 and rs2472682 were only associated with the pharmacokinetics of CK. Thus, these hereditary variances could partly explain the interindividual differences in the pharmacokinetics of CK.