• Title/Summary/Keyword: Ligand exchange

Search Result 120, Processing Time 0.023 seconds

An influence of the exchange rate on NOE intensities of a ligand: Application to 37kDa trp-holo-repressor/operator DNA complex

  • Lee, Donghan;Lee, Weontae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • The cross peak intensities versus mixing times of 2D NOESY spectrum for a corepressor L-trp were simulated for the case of a ligand exchanging between free (AX) and bound (A'X') forms in protein/DNA complex. The direct NOE (I(AX)) of the free ligand exhibited a small positive intensity indicative of the strong dominant influence of the bound ligand. The exchange-mediated NOE peak (I(AX')) was very sensitive to corepressor exchange. However, both diagonal (I(A'A')) and direct NOE (I(A'X')) intensities of the bound ligand were not affected much at initial stage. Both peaks were severely influenced by exchange at mixing times of greater than 100 ms. In conclusion, since the NOE intensity is a function of exchange rate, the exchange effect should be considered to properly extract accurate distance information for bound ligand in the presence of conformational exchange.

  • PDF

Ligand Exchange Studies with an Iminodiacetic Acid Ion Exchange Resin (Iminodiacetic Acid 이온 교환수지를 사용한 Ligand Exchange 에 대한 연구)

  • CHONG MIN BAK
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.56-59
    • /
    • 1967
  • Mixtures of amines can be separated by elution chromatography on a chelating resin, Dowex A-1 loaded with nickel ions based on ligand exchange. Aqueous ammonia is used as the eluent. The method has proved particulary effective for separating aromatic amines.

  • PDF

Studies on Reactions of a Nickel Complex of a New Completely Conjugated Macrocyclic Ligand

  • Park, Young-Ae W.;Oh, Soon-Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.6
    • /
    • pp.476-479
    • /
    • 1987
  • The macrocyclic nickel complex of the molecular formula[Ni($C_{32}H_{26}N_4$)] has been synthesized from the template condensation reaction between 1-benzoylacetone and o-phenylenediamine in the presence of nickel acetate. Protonation and deuterium exchange reactions of the demetallated macrocyclic ligand and the nickel complex have been carried out. The infrared, electronic and proton magnetic resonance spectral data of both compounds are compared and discussed; protonation of the macrocyclic ligand take place at the nitrogen atoms and all the amine protons undergo very rapid deuterium exchange while the methine protons undergo very slow exchange. On the other hand, protonation of the nickel complex occurs at the nitrogen atoms and only amine protons undergo rapid deuterium exchange. Protonation and deprotonation of the nickel complexes proceed reversibly.

Chromatographic Behavior of Proteins on Stationary Phase with Aminocarboxy Ligand

  • Li, Rong;Ju, Ming-Yang;Chen, Bin;Sun, Qing-Yuan;Chen, Guo-Liang;Shi, Mei;Wang, Xiao-Gang;Zheng, Jian-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.590-594
    • /
    • 2011
  • An aminocarboxy aspartic acid-bonded silica (Asp-Silica) stationary phase was synthesized using L-aspartic acid as ligand and silica gel as matrix. The standard protein mixtures were separated with prepared chromatographic column. The effects of solution pH, salt concentration and metal ion on the retention of proteins were examined, and also compared with traditional iminodiacetic acid-bonded silica (IDA-Silica) column. The results show that Asp-Silica column exhibited an excellent separation performance for proteins. The retention of proteins on Asp-Silica stationary phase was consistent with electrostatic characteristic of cation-exchange. The stationary phase displayed typical metal chelate property after fixing copper ion (II) on Asp-Silica. Under competitive eluting condition, protein mixtures were effectively isolated. Asp ligand showed better ion-exchange and metal chelating properties as compared with IDA ligand.

Potential Energy Surfaces for Ligand Exchange Reactions of Square Planar Diamagnetic PtY2L2 Complexes:Hydrogen Bond (PtY2L2···L') versus Apical (Y2L2Pt···L') Interaction

  • Park, Jong-Keun;Kim, Bong-Gon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1405-1417
    • /
    • 2006
  • The geometrical structures, potential energy surfaces, and energetics for the ligand exchange reactions of tetracoordinated platinum $(PtY_2L_2\;:\;Y,\;L=Cl^-,\;OH^-,\;OH_2,\;NH_3)$ complexes in the ligand-solvent interaction systems were investigated using the ab initio Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The potential energy surfaces for the ligand exchange reactions used for the conversions of $(PtCl_4\;+\;H_2O)^{^\ast_\ast}\;to\;[PtCl_3(H_2O)\;+\;Cl^-]$ and $[Pt(NH_3)_2Cl_2\;+\;H_2O]$$[Pt(NH_3)_2Cl_2\;+\;H_2O]$ to $[Pt(NH_3)_2Cl(H_2O)\;+\;Cl^-] $ were investigated in detail. For these two exchange reactions, the transition states $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime])^{^\ast_\ast} $ correspond to complexes such as $(PtCl_4{\cdot}{\cdot}{\cdot}H_2O)^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$, respectively. In the transition state, $([PtCl_4{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]]^{^\ast_\ast})$ have a kind of 6-membered $(Pt-Cl{\cdot}{\cdot}{\cdot}HOH{\cdot}{\cdot}{\cdot}Cl)$ and $(Pt-OH{\cdot}{\cdot}{\cdot}Cl{\cdot}{\cdot}{\cdot}HN)$ interactions, respectively, wherein a central Pt(II) metal directly combines with a leaving $Cl^-$ and an entering $H_2O$. Simultaneously, the entering $H_2O$ interacts with a leaving $Cl^-$. No vertical one metal-ligand interactions $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime]) $ are found at the axial positions of the square planar $(PtY_2L_2)$ complexes, which were formed via a vertically associative mechanism leading to $D_{3h}$ or $C_{2v}$-transition state symmetry. The geometrical structure variations, molecular orbital variations (HOMO and LUMO), and relative stabilities for the ligand exchange processes are also examined quantitatively. Schematic diagrams for the dissociation reactions of {PtCl4(H2O)n(n=2,4)} into {$PtCl_3(H_2O)_{(n-2)}\;+\;Cl^-(H_2O)_2$} and the binding energies {$PtCl_4(H_2O)_n$(n = 1-5)} of $PtCl_4$ with water molecules are drawn.

Stereoselective Ligand Exchange Reaction of trans-dichlorocobalt(III) complex contained SS-epm and racemi propane-1,2-diamine (SS-epm이 배위된 trans-dichlorocobalt(III) 착물과 라세미 propane-1,2-diamine과의 입체선택적 리간드 치환반응)

  • Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • The stereoselective ligand exchange reaction of trans-$[Co(SS-epm)Cl_2]^+$ and racemic propane-1,2-diamine (rac-pn) produces the complex that is identified as $[CO(N)_6]^{3+}$ type of $[Co(SS-epm)(pn)]^{3+}$ by absorption spectrum. It is conceivable that the reaction mechanism involves substitution and isomerization. The calculated and experimentally determined ratios of the complexed enantiomeric substrates at equilibrium were as follows: $[Co(SS-epm)(pn)]^{3+}$,calcd 32 % / 68 %, exptl 19 % / 81 % R-pn / S-pn. It has been shown that the employment of molecular mechanics calculations as a predictive tool may lead to the design of chiral complexes that may be applied to the separation of racemic mixtures of simple bidentate ligands.

  • PDF

Geometrical Characteristics and Reactivities of Tetracoordinated Pd Complexes: Mono- and Bidentate Ligands and Charged and Uncharged Ligands

  • Yoo, Jin-Seon;Ha, Dong-Su;Kim, Jae-Sang;Kim, Bong-Gon;Park, Jong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.627-640
    • /
    • 2008
  • The geometrical structures, atomic charges, and relative energies of tetracoordinated Pd complexes [PdCl3Z (Z = Cl-, Br-, OH?-, H2O, NH3, PH3), PdCl2Z2 (Z = Br-, OH?-, H2O, NH3, PH3), PdZ?2X (Z = Cl-, OH?-, H2O, NH3, PH3; X = oxalate, O2-?CCO2-), and PdZ2Y (Z = Cl?-, OH?-, H2O, NH3, PH3; Y = succinate, CO2-?CHCHCO2-?)] and the ligand exchange reactions of the Pd complexes were investigated using the ab initio second order Mller-Plesset perturbation (MP2) and Density Functional Theory (DFT) methods. The geometrical characteristics of the tetracoordinated Pd(II) complexes with mono- and bidentate ligands, the effects of the atomic charges for the charged and uncharged ligands, the (dz2-p ) interactions between the dz2-orbital of Pd(II) and the p -orbital of bidentates, and the relative stabilities between the isomers of PdCl2Z2 and PdZ2Y were investigated in detail. The potential energy surfaces for the ligand exchange reactions used for the conversions of {[PdCl2(NH3)2] + H2O} to {[PdCl(NH3)2(H2O)]+ + Cl?-?} and {[PdCl2(PH3)2] + H2O} to {[PdCl(PH3)2(H2O)]+ + Cl?-?]} were investigated. The geometrical structure variations, molecular orbital variations (HOMO and LUMO), and relative stabilities for the ligand exchange processes were also examined quantitatively.

Optical Resolution of Dansyl Amino Acids with Addition of Benzyl-L-Hydroxyproline Copper(II) Chelate by High Performance Liquid Chromatography

  • Sun Haing Lee;Tae Sub Oh;Sang Hyun Bak
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.491-495
    • /
    • 1989
  • Resolution of enantiomers of DNS-amino acids has been achieved by a reversed phase liquid chromatography with an addition of a copper(Ⅱ) complex of N-benzyl-L-hydroxyproline to the mobile phase. N-Benzyl-L-hydroxyproline was prepared and used as a chiral ligand of copper(Ⅱ) chelate for the optical resolution. The pH and the concentration of copper(Ⅱ) chelate, organic solvent, and buffer agent in the mobile phase all affect the optical resolutions of dansyl amino acids. The elution orders between D and L-DNS-amino acids were different depending on the structure of the side chain of the amino acids. The retention mechanism for the chiral separation of the dansyl amino acids can be illustrated by the equilibrium of ligand exchange and by hydrophobic interaction with $C_{18}$ stationary phase. The chiral separation can be illustrated with cis and trans effect of the ligand exchange reaction.

Synthesis of Water-Dispersible Maghemite Nanocrystals using 6-Aminohexanoic Acid as a Capping Agent (6-Aminohexanoic Acid를 이용하여 물에 분산되는 Maghemite 나노입자의 합성)

  • Yu, Taekyung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.403-406
    • /
    • 2013
  • This paper describes a simple route to synthesis of water-dispersible monodisperse maghemite (${\gamma}-Fe_2O_3$) nanocrystals using 6-aminohexanoic acid (AHA) as a stabilizer. The water-dispersible ${\gamma}-Fe_2O_3$ nanocrystals with an average size of 5 nm were obtained simply by addition of $Fe(CO)_5$ into an octyl ether solution containing AHA at $195^{\circ}C$ under argon condition. As-prepared AHA coated ${\gamma}-Fe_2O_3$ nanocrystals exhibited highly crystallinity and magnetic property while keeping a good dispersity in an aqueous phase. We also obtained water-dispersible AHA coated ${\gamma}-Fe_2O_3$ nanocrystals using ligand-exchange method, demonstrating that AHA can be a good candidate for preparing water-dispersible uniform metal oxide nanocrystals.