• Title/Summary/Keyword: Ligand effect

Search Result 423, Processing Time 0.023 seconds

Studies on the Complexes of Lanthanide ion with Multidentate Ligand (I). Determination of Thermodynamic Parameters with Solution Calorimetric Method in Nonaqueous Solvents (란탄족 원소의 여러자리 리간드 착물에 관한 연구 (제 1 보) 물아닌 용액에서 용액열량계에 의한 열역학적 함수결정)

  • Sam-Woo Kang;Won-Hae Koo;Soo-Min Lee;Chang Choo-Hwan;Moo-Yol Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.588-595
    • /
    • 1989
  • Log K, ${\Delta}$H and ${\Delta}$S for the complexation of $La^{3+},\;Ce^{3+}$ and $Eu^{3+}$with various multidentate ligand containing crown ether, diaza crown ether and diamine ether have been determined in methanol and acetonitril solutions at $25^{\circ}C$ by solution calorimetric titration method. The greater stability constant of $La^{3+}$-15C5 than those of 18C6 diaza [2.2] in methanol are discussed in terms of the size of metal ion and the ligand cavity and of metal ion solvation. The stabilities of $Ce^{3+}$ and $La^{3+}$ ion complexes with a various multidentate ligand in acetonitril are in the order of (diamine ether)<18C6<15C5$Ce^{3+}$, $La^{3+}$ and $Eu^{3+}$-diaza [2.2] complexes in acetonitril are increased with the following order: $Eu^{3+}$ < $La^{3+}$ < $Ce^{3+}$, that is increasing order of the optimum size and of the charge density of metal ion.

  • PDF

Tetrazolium Violet Induced Apoptosis and Cell Cycle Arrest in Human Lung Cancer A549 Cells

  • Zhang, Xiao-Hong;Zhang, Nan;Lu, Jian-Mei;Kong, Qing-Zhong;Zhao, Yun-Feng
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Tetrazolium violet is a tetrazolium salt and has been proposed as an antitumor agent. In this study, we reported for the first time that tetrazolium violet not only inhibited human lung cancer A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. The results showed that tetrazolium violet significantly decreased the viability of A549 cells at $5-15{\mu}M$. Tetrazolium violet -induced apoptosis in A549 cells was confirmed by H33258 staining assay. In A549, tetrazolium violet blocked the progression of the cell cycle at G1 phase by inducing p53 expression and further up-regulating p21/WAF1 expression. In addition, an enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as caspase, were responsible for the apoptotic effect induced by tetrazolium violet. The conclusion of this study is that tetrazolium violet induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that tetrazolium violet has strong potential for development as an agent for treatment lung cancer.

1D-Coordination Polymer Formed by Structural Conversion of an Oxazolidine Ligand in Reaction with the Copper(II) Halides

  • Mardani, Zahra;Golsanamlou, Vali;Jabbarzadeh, Zahra;Moeini, Keyvan;Carpenter-Warren, Cameron;Slawin, Alexandra M.Z.;Woollins, J. Derek
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.372-376
    • /
    • 2018
  • A 1D-coordination polymer of $1D-\{Cu({\mu}-picolinato)_2\}$ $\{Hakimi,\;2012\;\sharp73\}_n$ (1), was prepared by the reactions between 2-(2-(pyridin-2-yl)oxazolidin-3-yl)ethanol (AEPC) ligand and $CuCl_2$ or $CuBr_2$. The product was characterized by elemental analysis, UV-Vis, FT-IR spectroscopy and single-crystal X-ray diffraction. The X-ray analysis results revealed that the AEPC ligand, after reactions with the copper(II) chloride or bromide, gives the same product - $1D-\{Cu({\mu}-picolinato)_2\}_n$ (1). The coordination modes for various picolinate-based ligands were extracted from the Cambridge Structural Database (CSD). In the crystal structure of 1, the copper atom has a $CuN_2O_4$ environment and octahedral geometry, which is distorted by elongation of the axial bond lengths due to the Jahn-Teller effect.

Electrochemical Behavior of Mordant Red 19 and its Complexes with Light Lanthanides

  • Sang Kwon Lee;Taek Dong Chung;Song-Ju Lee;Ki-Hyung Chjo;Young Gu Ha;Ki-Won Cha;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.567-574
    • /
    • 1993
  • Mordant Red 19(MR19) is reduced at mercury electrode at -0.67 V vs. Ag/AgCl with two electrons per molecule in pH 9.2 buffer by differential pulse polarography and linear sweep voltammetry. The peak potential is dependent on the pH of solution. The exhaustive electrolysis, however, gives 4 electrons per molecule because of the disproportionation of the unstable hydrazo intermediate. The electrochemical reduction of lanthanide-MR19 complexes is observed at more cathodic potential than that of free ligand. The difference in peak potentials between complex and free ligand varies from 75 mV for $La^{3+}$ to 165 mV for $Tb^{3+}$ and increases with increasing the atomic number of lanthanide. The electrochemical reduction of lanthanide complexes with MR19 is due to the reduction of ligand itself, and it can be potentially useful as an indirect method for the determination of lanthanides. The shape of i-E curves and the scan rate dependence indicates the presence of adsorption and the adsorption was confirmed by potential double-step chronocoulometry and the effect of standing time. Also the surface excess of the adsorbed species and diffusion coefficients are determined. The composition of the complex is determined to be 1 : 2 by spectrophotometric and electrochemical methods.

Docking and Quantum Mechanics-Guided CoMFA Analysis of b-RAF Inhibitors

  • Muddassar, M.;Pasha, F. A.;Yoo, Kyung-Ho;Lee, So-Ha;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1499-1504
    • /
    • 2008
  • Pyrazine derivatives bind to b-RAF receptor which is important in cancer therapy. The ligand-receptor interactions have been studied by comparative molecular field analysis (CoMFA) and molecular docking methods. Applying conventional ligand-based alignment schemes for the whole set was not successful. However, QM and DFT results suggested that some ligands have electrostatic interaction while others have steric interactions. On the basis of these results, we divided the dataset into two subsets. Electrostatic effect was found to be important in one set while steric effect for the other. Best docking modes were obtained for each subset based on the available crystal structure. These receptor-guided CoMFA models propose an interesting possibility which is difficult to obtain otherwise. i.e., in one binding mode the electrostatic interaction plays a key role for one subset ($q^2$ = 0.46, $r^2$ = 0.98), while in another binding mode steric effect is important with another subset ($q^2$ = 0.43, $r^2$ = 0.74).

Effect of Environmental Factors on the Determination of the Ecotoxicological Threshold Concentration of Cu in Soil Pore Water through Biotic Ligand Model and Species Sensitivity Distribution (Biotic ligand model과 종 민감도 분포를 이용한 토양 공극수 내 Cu의 생태독성학적 허용농도 결정에 미치는 환경인자의 영향)

  • Yu, Gihyeon;An, Jinsung;Jeong, Buyun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • Biotic ligand model (BLM) and species sensitivity distribution (SSD) were used to determine the site-specific Cu threshold concentration (5% hazardous concentration; HC5) in soil pore water. Model parameters for Cu-BLM were collected for six plants, one collembola, and two earthworms from published literatures. Half maximal effective concentration ($EC_{50}\{Cu^{2+}\}$), expressed as $Cu^{2+}$ activity, was calculated based on activities of major cations and the collected Cu-BLM parameters. The $EC_{50}\{Cu^{2+}\}$ varied from 2 nM to $251{\mu}M$ according to the variation in environmental factors of soil pore water (pH, major cation/anion concentrations) and the type of species. Hazardous activity for 5% (HA5) and HC5 calculated from SSD varied from 0.076 to $0.4{\mu}g/L$ and 0.4 to $83.4{\mu}g/L$, respectively. HA5 and HC5 significantly decreased with the increase in pH in the region with pH less than 7 due to the decrease in competition with $H^+$ and $Cu^{2+}$. In the region with pH more than 7, HC5 increased with the increase in pH due to the formation of complexes of Cu with inorganic ligands. In the presence of dissolved organic carbon (DOC), Cu and DOC form a complex, which decreases $Cu^{2+}$ activity in soil pore water, resulting in up to 292-fold increase in HC5 from 0.48 to $140{\mu}g/L$.

Kinetic Analysis of the Counter-transport Phenomenon in the Hepatic Transport of Organic Anionic Drugs (유기 음이온계 약물의 간수송과정에 있어서 대향수송현상에 관한 속도론적 연구)

  • Chung, Youn-Bok;Han, Kun;No, Jung-Ryul
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.4
    • /
    • pp.289-300
    • /
    • 1992
  • The counter-transport phenomena in the hepatic transport of 1-anilino-8-naphthalene sulfonate (ANS) were kinetically investigated by analyzing the plasma disappearance-time profiles and the transport into the isolated hepatocytes. In vivo "counter transport phenomena" were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of counter-transport phenomenon. To examine the inhibitory effects on the initial uptake of a ligand by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. The initial plasma disappearance curves of ANS were then kinetically analyzed based on a two-compartment model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). No effects on the initial plasma disappearance rates of ANS were observed after preloading of bromophenol blue (BPB) or rose bengal (RB) in the liver. Inhibitory effect of BPB or RB on the initial uptake (or efflux) rates of ANS by the isolated hepatocytes were not observed, suggesting that the true counter transport mechanism is not working. In conclusion, checking the preloading effects of transstimulation on the initial uptake of a ligand by the liver could be a useful criterion for carrier cycling and common use of the same carrier between two ligands. However, one cannot exclude those possibilities even if the preloading effects cannot be observed.

  • PDF

Synthesis and Characterization of Square Planar Mixed-Ligand Complexes (II) : Electrophilic and Nucleophilic Reaction of M(S-S)(N-N) Type Complexes with Ni(II), Pd(II), and Pt(II) (평면사각형 혼합 리간드 착물의 합성과 그 특성 (제 2 보) : Ni(II), Pd(II) 및 Pt(II)의 M(S-S)(N-N)형 착물의 친전자성 및 친핵성 반응)

  • OH Sang Oh;Chung Duck Young
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.81-86
    • /
    • 1992
  • The electrophilic and nucleophilic reactions of M(S-S,ph)(N-N,H) (M = Ni(II), Pd(II), Pt(II); (S-S,ph) = 1,2-diphenylethylenedithiolate; (N-N,H)=1,10-phenanthroline) complexes have been investigated. Reaction with norbornadiene depended upon the back donating ability of the central metal ion and produced 2,5-dithia-3,4-diphenyl-tricyclo[4,4,1,0]-undeca-3,8-diene. In the reaction with methyl iodide, the effect of cleavage of (N-N,H) ligand affected the yield of methylated $M(S-S,ph)_2$ product. The structure of the thermolysis product, ${\alpha},{\alpha}{\prime}$-bismethylthiostibene $(CH_3S-SCH_3,ph)$ of methylated complexes indicates that the main product of the nucleophilic reaction is $M(CH_3S-SCH_3,ph)(S-S,ph)$. We have synthesized a new mixed-ligand complex M(S-S,CN)(N-N,H)((S-S,CN) = 1,2-dicyanoethylenedithiolate) through the nucleophilic reaction of ligand.

  • PDF

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF

Transition Metal Complexes Derived From 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide Synthesis, Structural Characterization, and Biological Activities

  • Alhakimi, Ahmed N.;Shakdofa, Mohamad M.E.;Saeed, S. El-Sayed;Shakdofa, Adel M.E.;Al-Fakeh, Maged S.;Abdu, Ashwaq M.;Alhagri, Ibrahim A.
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.93-105
    • /
    • 2021
  • Mononuclear Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Fe(III), Ru(III), and UO2(II) complexes of 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide (H2L) were prepared by direct method. The ligand and its complexes were isolated in solid state and characterized by analytical techniques such as elemental and thermal analyses, molar conductance, magnetic susceptibility measurements and spectroscopic techniques such as UV-Visible, IR, 1H-NMR and 13C-NMR. The spectral data indicated that the ligand acted as neutral/monobasic bidentate or monobasic/dibasic tridentate ligand bonded to the metal ions through the oxygen atom of ketonic or enolic carbonyl group, azomethine nitrogen atom and deprotonated/protonated phenolic oxygen atom forming either tetragonally distorted octahedral or octahedral. Antimicrobial activities of the ligand and its complexes were evaluated against Escherichia coli, Bacillus subtilis and Aspergillus niger by well diffusion method. The results of antifungal activity showed that the Fe(III) complex (10) exhibited higher antifungal against Aspergillus niger than the other complexes. However, the results of antibacterial activity revealed that Cu(II) complex (4) is the most active against Escherichia coli while the Cu(II) complex (5) and Fe(III) complex (10) exhibited higher antibacterial effect on Bacillus subtilis than the other complexes.