• 제목/요약/키워드: Lifting-Chamber Design

검색결과 3건 처리시간 0.016초

수치해석을 이용한 부양실 설계변수에 관한 연구 (A Parametric Study on Design Variables of Lifting Chamber Using Numerical Simulation)

  • 전창수
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.52-64
    • /
    • 1998
  • Numerical simulations on the flowfield of lifting chamber for Wing-In-Ground vehicle were performed using Fluent/UNS 4.2 software. The trend of lifting force in lifting chamber and parametric study of geometric and fluid variables were primarily investigated. Selected parameters for investigation are inlet velocity, height between chamber and water level, depth of the skirt, location of inlet, variaton of height at bow and stern. Also, air capturing capabilities from downstream of the propeller were evaluated at the air inlet. The lifting force was increased linearly with the increased of inlet velocity and nonlinearly with the decrease of height force was increased with increased depth. It turned out to have very minor effect on lifting force to change the location of air inlet for lifting chamber, installed on top surface. Tilting the vehicle when it was lifted, the lifting forces, generated in each case, showed no appreciable changes.

  • PDF

Stability and parameters influence study of fully balanced hoist vertical ship lift

  • Cheng, Xionghao;Shi, Duanwei;Li, Hongxiang;Xia, Re;Zhang, Yang;Zhou, Ji
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.583-594
    • /
    • 2018
  • A theoretical formulation based on the linearized potential theory, the Descartes' rule and the extremum optimization method is presented to calculate the critical distance of lifting points of the fully balanced hoist vertical ship lift, and to study pitching stability of the ship lift. The overturning torque of the ship chamber is proposed based on the Housner theory. A seven-free-degree dynamic model of the ship lift based on the Lagrange equation of the second kind is then established, including the ship chamber, the wire rope, the gravity counterweights and the liquid in the ship chamber. Subsequently, an eigenvalue equation is obtained with the coefficient matrix of the dynamic equations, and a key coefficient is analyzed by innovative use of the minimum optimization method for a stability criterion. Also, an extensive influence of the structural parameters contains the gravity counterweight wire rope stiffness, synchronous shaft stiffness, lifting height and hoists radius on the critical distance of lifting points is numerically analyzed. With the Runge-Kutta method, the four primary dynamical responses of the ship lift are investigated to demonstrate the accuracy/reliability of the result from the theoretical formulation. It is revealed that the critical distance of lifting points decreases with increasing the synchronous shaft stiffness, while increases with rising the other three structural parameters. Moreover, the theoretical formulation is more applicable than the previous criterions to design the layout of the fully balanced hoist vertical ship lift for the ensuring of the stability.

자동차용 가스 스프링의 반력 특성에 관한 연구 (A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.