• Title/Summary/Keyword: Lifting force

Search Result 162, Processing Time 0.028 seconds

Selection of Optimum Clearance Considering the Dynamic Behavior of a High-pressure Injector (고압 인젝터의 동적 거동을 고려한 최적 틈새 조합에 관한 연구)

  • Ryu, Daewon;Kim, Dongjun;Park, Sang-Shin;Ryu, Bongwoo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.172-178
    • /
    • 2021
  • An injector is a mechanical device present inside the engine. Its main function is to supply an appropriate volume of fuel into the combustion chamber, which is directly related to the overall engine efficiency of a car. During the operation of an injector, a magnetic force lifts the parts of the injector from closed position to open position which generates a horizontal force on the needle. The horizontal force acts on a different position from that of the center of mass of the needle. Therefore, this causes eccentricity in the needle and the generation of a tilting motion during the lifting operation which can result in wear. However, appropriate selection of clearances for these parts can prevent wear. In this study, lubrication analysis is conducted to determine the optimum clearance of parts with sliding motion inside the injector. The height functions are derived considering the dynamic behavior and relative velocity of the parts. Using the derived height function, the pressure profiles are calculated for the lubricated surfaces from the Reynolds' equation. Subsequently, the fluid reaction forces are calculated. The equations of motions are applied to the fluid reaction forces and external forces are solved to calculate the minimum film thickness between each part with variation in the clearances. Finally, the optimum clearances are determined. The effect of the clearances on the behavior of the moving parts is presented and discussed.

Investigation of the Effects of Teeth Clenching Due to Weight Training on Oral Health

  • Sang Min Lee;Eun Chae Lee;Juwon Gong;Chae Eun Jang;Young Sun Hwang
    • Journal of dental hygiene science
    • /
    • v.24 no.3
    • /
    • pp.152-159
    • /
    • 2024
  • Background: As interest in health increases, the number of people engaging in weight training to enhance muscle strength and muscle mass is on the rise. High-intensity weight training has been reported to induce tooth clenching habits, leading to tooth damage and temporomandibular joint (TMJ) abnormalities. Consequently, it is essential to investigate the impact of weight training accompanied by tooth clenching on oral health and to develop guidelines based on these findings. Methods: The study included male participants aged 25 years and older, comprising 15 non-exercisers and 15 professional fitness trainers who have been engaged in weight training for over 5 years. Data were collected using a self-administered questionnaire to gather information on age, exercise experience, total weight lifted in three major weight training exercises (deadlift, bench press, and squat), and teeth clenching habits. Additionally, examinations for tooth cracks and fractures, TMJ noise and pain, maximum mouth opening, occlusal force, and occlusal contact area were conducted. Results: Compared to non-exercisers, professional fitness trainers who have been engaged in weight training for over 5 years exhibited a higher prevalence of teeth clenching habits. While there were no significant differences between the two groups in occlusal contact area and the extent of tooth fractures, there were significant differences in occlusal force and the degree of tooth cracks. Furthermore, unlike joint noise and TMJ pain, the maximum mouth opening was significantly reduced in professional fitness trainers compared to non-exercisers. Conclusion: Our study suggests that the continuation of high-intensity exercise, which induces teeth clenching habits, may cause tooth damage and TMJ disorders.

Comparison of Lower Extremity Kinematics and Kinetics during Downhill and Valley-shape Combined Slope Walking

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.161-166
    • /
    • 2016
  • Objective: The purpose of this study was to determine the knee and ankle joint kinematics and kinetics by comparing downhill walking with valley-shape combined slope walking. Method: Eighteen healthy men participated in this study. A three-dimensional motion capture system equipped with eight infrared cameras and a synchronized force plate, which was embedded in the sloped walkway, was used. Obtained kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of 0.05. Results: The knee flexion angle after the mid-stance phase, the mean peak knee flexion angle in the early swing phase, and the ankle mean peak dorsiflexion angle were greater during downhill walking compared with valley-shape combined slope walking (p < 0.001). Both the mean peak vertical ground reaction force (GRF) in the early stance phase and late stance phase during downhill walking were smaller than those values during valley-shape combined slope walking. (p = 0.007 and p < 0.001, respectively). The mean peak anterior GRF, appearing right after toe-off during downhill walking, was also smaller than that of valley-shape combined slope walking (p = 0.002). The mean peak knee extension moment and ankle plantar flexion moment in late stance phase during downhill walking were significantly smaller than those of valley-shape combined slope walking (p = 0.002 and p = 0.015, respectively). Conclusion: These results suggest that gait strategy was modified during valley-shape combined slope walking when compared with continuous downhill walking in order to gain the propulsion for lifting the body up the incline for foot clearance.

Market Survey and Motion Characteristics Research on Fitness Compression Wear to Improve Muscle Efficiency for the Elderly (고령자 근효율 향상을 위한 피트니스 압박웨어 시장조사 및 동작특성 조사)

  • Jeon, Eun-Jin;You, Hee-Cheon;Kim, Dong-Mi;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.20 no.3
    • /
    • pp.343-352
    • /
    • 2018
  • The objective of this study is to investigate the market of fitness compression wear as well as to design an optimal fitness compression wear by analyzing the muscle and movement characteristics of the elderly women in Korea. In this regard, research for functional garments is needed to increase muscle activity of elderly people during physical exercise. Firstly, we investigated the brand, design, size, material, and pattern of fitness wear based on the market survey. Secondly, we identified preference, evaluation items, evaluation method, and pattern design method based on the literature review. Finally, in addition, the motion type, range, angle to improve the muscle strength of the elderly were investigated and the maximum muscle strengths of each motion were analyzed by using 2007 Size Korea data (n = 386). It is also designed for muscle fatigue through exercise and rapid fatigue recovery after exercise. The evaluation methods for fitness compression wear were classified as motor functionality, physiological comfort, pattern and material suitability evaluations. The muscle strength at leg (pushing force) and waist (lifting force) of the ages of 60 to 69 years old showed 239.3 N and 274.5 N, respectively, which were the lowest forces compared to younger age groups. By applying these results to the design process of fitness wear, it is anticipated that the fitness wear will have a proper fit to the body shape of elderly people in South Korea as well as it can increase muscle efficiency to promote physical capability and healthy life for senior people.

Effect of Trunk Flexion and Low Extremity Posture on Maximum Holding Time (허리굽힘과 다리자세가 작업지속시간에 미치는 영향에 관한 연구)

  • Lee, Se-Jung;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.69-74
    • /
    • 2011
  • Despite most of tasks in manufacturing, construction and agriculture, etc., were currently mechanized and automated, manual materials handling still existed in atypical working condition. In case of manual materials handling, repetitive work, inappropriate working posture, excessive force, contact stress might cause overload, which could lead to work-related musculoskeletal disorders and low back pains. On this basis, the goal of this study is to reveal the effects of various lifting postures of trunk angles and lower extremity postures on maximum holding time(MHT). Twenty two subjects were recruited from a university population. The experiment was designed by a combination of three trunk angle ($0^{\circ}$, $20^{\circ}$, $60^{\circ}$) and three lower extremity postures(straight, bent, kneeling). Before experimental trials, subjects performed MVC(maximum voluntary contraction) exertions in three trunk angles ($0^{\circ}$, $20^{\circ}$, $60^{\circ}$) to calculate 30%MVC at designated postures. In each trial, they were required to hold the handheld load(30%MVC) for a designated posture as long as they could. The results of MVC by trunk angles were measured in $0^{\circ}$ > $20^{\circ}$ > $60^{\circ}$ orders, but those of MHT measured in $20^{\circ}$ > $0^{\circ}$ > $60^{\circ}$ orders. These results showed that straight posture is the ideal working posture in work exerted a strong force for a short time, but the ability to work might be improved in the trunk angle $20^{\circ}$ in work required 30%MVC for a long time. Also, results of MVC and MHT by lower extremity postures measured in straight > bent > kneeling orders.

Evaluation of Biomechanical Movements and Injury Risk Factors in Weight Lifting (Snatch)

  • Moon, YoungJin
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.369-375
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the possibility of injuries and the types of movement related to damage by body parts, and to prepare for prevention of injuries and development of a training program. Method: For this study, the experiment was conducted according to levels of 60 percentages (ST) and 85 percentages (MA) and 10 subjects from the Korean elite national weightlifting team were included. Furthermore, we analyzed joint moment and muscle activation pattern with three-dimensional video analysis. Ground reaction force and EMG analyses were performed to measure the factors related to injuries and motion. Results: Knee reinjuries such as anterior cruciate ligament damage caused by deterioration of the control ability for the forward movement function of the tibia based on the movement of the biceps femoris when the rectus femoris is activated with the powerful last-pull movement. In particular, athletes with previous or current injuries should perceive a careful contiguity of the ratio of the biceps femoris to the rectus femoris. This shows that athletes can exert five times greater force than the injury threshold in contrast to the inversion moment of the ankle, which is actively performed for a powerful last pull motion and is positively considered in terms of intentional motion. It is activated by excessive adduction and internal rotation moment to avoid excessive abduction and external rotation of the knee at lockout motion. It is an injury risk to muscles and ligaments, causing large adduction moment and internal rotation moment at the knee. Adduction moment in the elbow joint increased to higher than the injury threshold at ST (60% level) in the lockout phase. Hence, all athletes are indicated to be at a high risk of injury of the elbow adductor muscle. Lockout motion is similar to the "high five" posture, and repetitive training in this motion increases the likelihood of injuries because of occurrence of strong internal rotation and adduction of the shoulder. Training volume of lockout motion has to be considered when developing a training program. Conclusion: The important factors related to injury at snatch include B/R rate, muscles to activate the adduction moment and internal rotation moment at the elbow joint in the lockout phase, and muscles to activate the internal rotation moment at the shoulder joint in the lockout phase.

Evaluation of Seat Pan Inclination During Sit-to-stand for Development of Elderly Lifting-chair

  • Hong, Jae-Soo;Kim, Jong-Hyun;Chun, Keyoung-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.357-363
    • /
    • 2011
  • Objective: The aim of this study is to set the design direction of the lift chair's tilting seat for development. Background: Great attention has been shown to the development of senior friendly product, because of increasing elderly population rapidly in Korea. Therefore, we need to study on sit-to-stand(STS) motion of elderly systematically for developing lift chair that is one of senior friendly products. Method: In this study, we analyzed joint moment(knee, hip) and muscle activity (Erector spinae, Rectus femoris, Vastus lateralis) on STS motion of elderly(female, 60~70: 7) and young people(female, 20~30: 7) using 3 dimension motion capture camera, force plate, wireless EMG. Results: The results of muscle activity showed a similar trend but the results of joint moment were a lot of differences between the young and the elderly. Conclusion: The results of knee joint moment suggest the angle(10~30deg)-adjustable seat that can be better than to find the optimal seat's angle. Application: The method and results of this study are expected to develop senior friendly product and verification as well as be available to various application.

Experimental study on possible vortex shedding in a suspension bridge - Part II - Results when under typhoon Babs and York

  • Law, S.S.;Yang, Q.S.;Fang, Y.L.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.555-576
    • /
    • 2007
  • Statistical analysis on the measured responses of a suspension bridge deck (Law, et al. 2007) show that vibration response at the first torsional mode of the structure has a significant increase at and beyond the critical wind speed for vortex shedding as noted in the wind tunnel tests on a sectional model. This paper further analyzes the measured responses of the structure when under typhoon conditions for any possible vortex shedding events. Parameters related to the lifting force in such a possible event and the vibration amplitudes are estimated with a single-degree-of-freedom model of the system. The spatial correlation of vortex shedding along the bridge span is also investigated. Possible vortex shedding events are found at both the first torsional and second vertical modes with the root-mean-square amplitudes comparable to those predicted from wind tunnel tests. Small negative stiffness due to wind effects is observed in isolated events that last for a short duration, but the aerodynamic damping exhibits either positive or negative values when the vertical angle of wind incidence is beyond ${\pm}10^{\circ}$. Vibration of the bridge deck is highly correlated in the events at least in the middle one-third of the main span.

SW05 Rotor Lift of an Unmanned Helicopter for Precise ULV Aerial Application (초미량 정밀살포용 무인헬리콥터의 SW05 로터 양력시험)

  • Koo, Young-Mo;Seok, Tae-Su;Shin, Shi-Kyoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • A small unmanned helicopter was suggested to replace the conventional spray system. Aerial application using an agricultural helicopter helps precise and timely spraying, and reduces labor intensity and environmental pollution. In this research, a rotor system (SW05) was developed and its lift capability was evaluated. Lift force for the dead weight of the helicopter was obtained at the grip pitch angle of $12^{\circ}$. As the pitch angle increased to $14^{\circ}$ and $16^{\circ}$, the payload increased to 176 N and 216 N, respectively. Compared with SW04 airfoil performance in the total lift, the SW05 airfoil showed nearly the same capacity, but the payload of the SW05 was reduced because of the increased dead weight. A rated flight condition was defined as lifting mean payload of 294 N with the grip pitch angles of $16{\sim}17^{\circ}$ at the rotor rotating speed of 850~950 rpm for the adjusted engine power. The fuel consumption would be 4.8~6.0 L/hr, and the air temperature of cooling fan should be kept below $160^{\circ}C$.

Hinge Mechanism Design of Smooth-Lift-Unit for Flat Panel Display (평판디스플레이용 유연승강유니트의 힌지기구 설계)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Cho, Gyu-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.85-91
    • /
    • 2007
  • This study was carried out to minimize the lifting force of a two hinge type stand mechanism. This unit is designed for the display devices in order to enhance the ergonomics for effective height adjustment and maintenance at any preferred position. The unit will be very useful for the mechanism fabricated with a coil spring and disc springs as a torque generator. The maximum and the minimum torque value should be calculated initially for the smooth lift. And the reasonable torque distribution is necessary to prevent any auto lift and auto dropping at any position because the torque generated by coil spring is more sensitive than disc spring in tilting the position. Therefore, the analysis of the coil spring is requisite to issue the specific torque value depending on the distorted angle with securing reliability of a long time storage condition. After the theoretical torque value was calculated, the evaluation was carried out by making a proto-type sample, then distorted angle was updated by experiment. The result of this study can readily be applied to various units for the optimization of the smooth lift.

  • PDF