• Title/Summary/Keyword: Lifting Pin

Search Result 11, Processing Time 0.027 seconds

A Study for Rationalization of Lifting Lug Design of Ship Block (선박블록 탑재용 러그구조의 설계합리화를 위한 연구)

  • 함주혁
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-261
    • /
    • 1997
  • A basic study on the lifting lug design has performed through the rational and systematic process. In order to evaluate the proper design-load distribution around lug eye investigation of contact force between lifting lug and shackle pin is performed using non-linear parametric analysis idealized by gap element models. Gap element modeling and nonlinear analysis procedures are illustrated and discussed based on MSC/NASTRAN. Some analysis and design guides are suggested through the consideration of several important effects such as stress distribution pattern, circumferential contact force distribution along the lug eye face, loading share rate between lug main plate and doubler, effect of loading direction, relation between applied force and deflection and size effect of shackle pin radius. Additionally optimum design studies are performed and general trends according to the variation of design parameters are suggested.

  • PDF

A Study of Strength Evaluation of Crankshaft Lifting Pin for Reducing Weight (대형 크랭크축 리프팅 핀의 경량화를 위한 강도평가 연구)

  • Jeon, Byung-Young;Kim, Byung-Joo;Park, Jong-Du
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.7-12
    • /
    • 2004
  • Large-sized pins are usually used to lift and handle large low speed diesel engine crankshaft. There has then been a need to reduce and optimize the weight of the traditionally used pins. Making an hole by cutting the inside of the pin out was investigated in view of static and fracture strength. To compensate the stress increase caused by the introduction of the inner hole, the groove in the circumferential direction pre-existing on the pin is to be removed. Finite element analysis was carried out for both the original model and weight reduced model. Stress intensity factors for semi-elliptical defects assumed on the pin for the original model and weight reduced model was calculated using the ASME method and compared with the fracture toughness test result of the pin material. The diameter of the cutting hole for the revised model was determined based on the analysis results.

  • PDF

Design and strength analysis of lifting lugs (Lifting lug의 설계 절차 및 강도해석 방법에 대한 고찰)

  • Seo, Sun-Kee;Kim, Kyung-Rae;Eom, Sung-Sub;Seo, Yong-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.51-54
    • /
    • 2011
  • This paper presents methods for design and strength analysis of lifting lugs utilized in assembling, erection, and turning over of ship structures. Lifting lugs are designed in accordance with ASME BTH-1-2008; Design of Below-the-Hook Lifting Devices. Experimental tests for fillet welded joints were conducted to design weld size of lifting lugs and under-structures. The nonlinear finite element method, using MSC.Marc software, is employed for limit state assessment of lifting lugs in static loading conditions. The analysis considers nonlinearities in material properties and contact between lifting lug and pin.

  • PDF

Design for Raising the Rate of Recovering use of Lifting Lug (리프팅 러그 재사용율 제고를 위한 설계)

  • 김상일
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • With the fast growth of shipbuilding industry, in recent years several hundreds of thousands of lifting lugs for a year have been used. This paper is aimed at maximizing the recovering use of lifting lugs. In this study, we have evaluated the structural strength for present and modified lifting lugs under in-plane and out-of-plane load conditions. For this purpose, the equivalent stresses have been calculated by nonlinear elasto-plastic analysis using the finite element program ABAQUS. At the same time, the contact conditions between lifting lug and shackle pin are also considered.

A Study on the Optimization of Lifting Lug for Block Erection (선박 블럭 탑재용 러그 구조 최적화 연구)

  • Min, Dug-Ki;Eum, Sung-Min
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.82-89
    • /
    • 2011
  • In general, a number of lifting lugs have been used in shipbuilding industry and the D-type lugs are mainly used. The aim of this paper is to increase the cycle of the use and to reduce the size of lifting lugs to introduce lightweight shackle. In this study, nonlinear elasto-plastic analysis has been performed to confirm the ultimate strength of lifting lugs. In order to evaluate the proper design-load distribution around lug eye, the contact force between lifting lug and shackle pin has been realized by gab element model. Gap element modeling and nonlinear analysis are carried out using the finite element program MSC/PATRAN & ABQUS. Additionally the ultimate strength tests were performed to verify the structural adequacy of newly designed lifting lug and to insure safety of it. The D-10, 15, 20 & 40 ton models which are mainly used in the block erection are selected in the strength test. According to the results of the analysis and strength test, the ultimate strength of the newly designed lifting lugs has been estimated to exceed 3 times of design working load.

  • PDF

Spot Friction Welding of 5J32 Al alloy (5J32 알루미늄 합금의 마찰 점용접)

  • Lee, Won-Bae;Lee, Chang-Yong;Yeon, Yun-Mo;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.192-194
    • /
    • 2005
  • Joint strength of spot friction welded 5J32 Al alloy were investigated according to the tool shape and the tool penetration depth. General spot friction stir welding tool consists of a shoulder having bigger diameter and a threaded pin projected from the shoulder, which resulted in the generation of large up-lifting of upper plate around the weld nugget because of the deeper penetration and the severe stirring effect of threaded pin. Two kinds of welding tools without the threaded pin were used to avoid the distortion and improve the joint strength. One was a simple cylindrical shape and the other was cylindrical shape with small projection. Therefore, the process was named as spot friction welding comparing to spot friction stir welding because spot friction welding don't use a stirring effect. Using the cylindrical shape tool with small projection, the up-lifting of upper plate were avoided and joint strength were superior to that of the joint using simple cylindrical shape tool. At the 0.5mm of too penetration depth using cylindrical tool with small projection, nugget pull fracture mode can be observed and shear fracture mode were dominant at the rest conditions.

  • PDF

SCANNING ELECTRON MICROSCOPIC STUDY OF LINK PLUS PIN IN DENTIN (상아질에 장착된 Link plus pin의 주사전자현미경적 연구)

  • Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.205-210
    • /
    • 1989
  • The purpose of this study was to observe the minim pins of Link plus (which has buttress thread and shoulder stop design) inserted into dentin and the dentin surrounding pin. The gingival walls of class II cavity were prepared with high speed handpiece in molar teeth not elapsed time after teeth were extracted, and pinhole of 2mm in depth was positioned about 1 mm to the dentinoenamel junction and minim pin was inserted with wrench. After initial examination of the specimens, the specimens were sectioned longitudinally and horizontally to the pins with carborundum disc and low speed diamond saw (Isomet Buehler Ltd) All specimens were coated Au of 250-300${\AA}$ in thickness with Ion Sputter JFC 100 and observed under Scanning Electron Microscope (JSM-35) The following results were obtained. 1. The shoulder stop was seated on the enterance of pinhole in gingival wall, and there were the irregular space between the pin and dentin at the enterance to the pin hole and flakes of dentin lifting from the dentin floor. 2. In case of section to pin horizontally or longitudinally, the dentin debris were observed in gap between pin and dentin, and small cracks were often seen in the dentin surrounding minim pins.

  • PDF

Parametric Design Considerations for Lifting Lug Structure on Ship Block (선박블록 탑재용 러그구조의 파라메트릭 설계 고찰)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2011
  • In view of the importance of material reduction because of the jump in oil and steel prices, structural design studies for lifting lugs were performed. Hundreds of thousands of such lifting lug structures are needed every year for ship construction. A direct design study was reviewed using the developed design system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to understand the design efficiency and convenience of a lug structure, parametric studies for prototype lug shapes were performed using the developed design system. From these design studies, various patterns of design parameters for the lug structure according to changes in the main plate length were examined. Based on these parametric study results, design guides were developed for more efficiently suggesting structural data for enormous lug structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

A Study on Loading Method of Large Scaffolding Module for LNG Carriers Using TRIZ (TRIZ를 이용한 LNG 운반선 대형 비계 모듈의 탑재 방안 연구)

  • Park, Myeong-Chul;Shin, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.94-100
    • /
    • 2021
  • To improve the productivity of cargo containment construction for a membrane LNG carrier, it is important to shorten the installation period and process of the scaffolding system, which is a construction workbench of a cargo containment for a membrane LNG carrier. As an effective method, opinions are being gathered to enlarge the lifting unit from the existing two stages to eight stages. On the other hand, the stresses around the pin and hole will increase significantly because of the increase in lifting load according to the large size of the module. The purpose of this study was to establish a new large module-lifting plan by introducing TRIZ to solve these problems. This study adopted a method to utilize 40 inventive principles, which is one of the various problem-solving tools of TRIZ. First, technical contradictions were derived, the engineering parameters were selected. Second, efficient inventive principles were selected to overcome the technical contradictions using a contradiction matrix. Finally, the general and specific solutions were derived through the selected inventive principle, and structural analysis confirmed that the stress generated in the structure was low. The utility of TRIZ was confirmed by the successful lifting of large modules using the established lifting method.

Consideration of the Lifting Lug Structure using the Hybrid Structural Design System (하이브리드 구조설계 시스템을 이용한 선박블록 탑재용 러그구조 고찰)

  • Ham, Juh-Hyeok;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.104-109
    • /
    • 2009
  • In the view of the importance of material reduction due to the jump in oil and steel prices, an optimized structural system for lifting lugs was developed. Such a system is needed hundreds of thousands of times a year. A direct design process was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to verify the system efficiency and convenience, several new prototype lug shapes were suggested using the developed system. From these research results, it was found that the slope of the main plate of the lug structure has a tendency to move from about 45 degrees to about 60 degrees and the design weight was reduced from an initial value of about 32kgf to about $15{\sim}19kg_f$ after the redesign. Based on these initial research results, an efficient reduction in steel weight was expected considering the enormous consumption of lug structures per year. Additionally, a more detail structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.