• 제목/요약/키워드: Lift-of-Drag Ratio

검색결과 216건 처리시간 0.022초

Fluctuating lift and drag acting on a 5:1 rectangular cylinder in various turbulent flows

  • Yang, Yang;Li, Mingshui;Yang, Xiongwei
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.137-149
    • /
    • 2022
  • In this paper, the fluctuating lift and drag forces on 5:1 rectangular cylinders with two different geometric scales in three turbulent flow-fields are investigated. The study is particularly focused on understanding the influence of the ratio of turbulence integral length scale to structure characteristic dimension (the length scale ratio). The results show that both fluctuating lift and drag forces are influenced by the length scale ratio. For the model with the larger length scale ratio, the corresponding fluctuating force coefficient is larger, while the spanwise correlation is weaker. However, the degree of influence of the length scale ratio on the two fluctuating forces are different. Compared to the fluctuating drag, the fluctuating lift is more sensitive to the variation of the length scale ratio. It is also found through spectral analysis that for the fluctuating lift, the change of length scale ratio mainly leads to the variation in the low frequency part of the loading, while the fluctuating drag generally follows the quasi-steady theory in the low frequency, and the slope of the drag spectrum at high frequencies changes with the length scale ratio. Then based on the experimental data, two empirical formulas considering the influence of length scale ratio are proposed for determining the lift and drag aerodynamic admittances of a 5:1 rectangular cylinder. Furthermore, a simple relationship is established to correlate the turbulence parameter with the fluctuating force coefficient, which could be used to predict the fluctuating force on a 5:1 rectangular cylinder under different parameter conditions.

넓은 받음각 범위에서 높은 양항비를 가지는 다중 수중익 형상의 전개장치 (Vane deployer with a hydrofoil array for enhanced lift-to-drag ratio at wide range of angle of attack)

  • 박주연;박형민
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.25-31
    • /
    • 2019
  • A device that consists of an array of hydrofoils (called a vane deployer) is widely used in ocean engineering. In general, the vane deployer has to spread out efficiently, which is possible by enhancing the lift-to-drag ratio. In the present study, using a computational fluid dynamics, we investigate the effect of hydrofoil arrangement on the lift-to-drag ratio to establish the condition in which a reasonable level of constant lift-to-drag ratio is achieved in a wide range of angle of attack, to avoid a degradation of the hydrodynamic performance. First, the flow around two-dimensional hydrofoil array is examined by varying the size of hydrofoil components, gap between the hydrofoils, and arrangement type. As a result, we determine the optimized hydrofoil array configuration whose lift-to-drag ratio is nearly independent on the angle of attack. Finally, a three-dimensional simulation is performed for the optimized geometry to estimate the performance of actual vane deployer.

날개의 종횡비가 날개 짓 운동의 공기역학적 특성에 미치는 영향 (The Effect of Aspect Ratio on Aerodynamic Characteristics of Flapping Motion)

  • 오현택;최항철;김광호;정진택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.217-220
    • /
    • 2006
  • The lift and drag forces produced by a wing of a given cross-sectional profile are dependent on the wing planform and the angle of attack. Aspect ratio is the ratio of the wing span to the average chord. For conventional fixed wing aircrafts, high aspect ratio wings produce a higher lift to drag ratio than low ones for flight at subsonic speeds. Therefore, high aspect ratio wings are used on aircraft intended for long endurance. However, birds and insects flap their wings to fly in the air and they can change their wing motions. Their wing motions are made up of translation and rotation. Therefore, we tested flapping motions with parameters which affect rotational motion such as the angle of attack and the wing beat frequency. The half elliptic shaped wings were designed with the variation of aspect ratio from 4 to 11. The flapping device was operated in the water to reduce the wing beat frequency according to Reynolds similarity. In this study, the aerodynamic forces, the time-averaged force coefficients and the lift to drag ratio were measured at Reynolds number 15,000 to explore the aerodynamic characteristics with the variation of aspect ratio. The maximum lift coefficient was turned up at AR=8. The mean drag coefficients were almost same values at angle of attack from $10^{\circ}$ to $40^{\circ}$ regardless of aspect ratio, and the mean drag coefficients above angle of attack $50^{\circ}$ were decreased according to the increase of aspect ratio. For flapping motion the maximum mean lift to drag ratio appeared at AR=8.

  • PDF

Aerodynamic Performance Improvement by Divergent Trailing Edge Modification to a Supercritical Airfoil

  • Yoo, Neung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1434-1441
    • /
    • 2001
  • A computational study has been performed to determine the effects of divergent trailing edge (DTE) modification to a supercritical airfoil in transonic flow field. For this, the computational result with the original DLBA 186 supercritical airfoil was compared to that of the modified DLBA 283. A wavier-Stokes code, Fluent 5. 1, was used with Spalart-Allmaras's one-equation turbulence model. Results in this study showed that the reduction in drag due to the DTE modification is associated with weakened shock and delayed shock appearance. The decrease in drag due to the DTE modification is greater than the increase in base drag. The effect of the recirculating flow region on lift increase was also observed. An airfoil with DTE modification achieved the same lift coefficient at a lower angle of attack while giving a lower drag coefficient. Thus, the lift-to-drag ratio increases in transonic flow conditions compared to the original airfoil. The lift coefficient increases considerably whereas the lift slope increases just a little due to DTE modification.

  • PDF

스마트 무인기에 부착한 Vortex Generator 효과 (Application of Vortex Generators on Smart Un-manned Aerial Vehicle(SUAV))

  • 정진덕;최성욱;조태환
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.688-693
    • /
    • 2007
  • To improve aerodynamic efficiency of the Smart Un-manned Aerial Vehicle(SUAV), vortex generator was applied along the wing upper surface during SUAV tests. Vortex generator, initially used in TR-S2 configuration to enhance lift characteristic, increased lift coefficient. Meanwhile vortex generator produced excessive drag and eventually reduced lift-to-drag ratio. To examine the effect of vortex generator's height, three different heights of vortex generator were used for various SUAV configuration. Vortex generator of 3mm height used in TR-S4 configuration produced 3.1% increase in maximum lift coefficient and 1.5% reduction in lift-to-drag ratio.

3차원 PAR WIG (Powder Augmented Ram Wing in Ground Effect) 의 수치연구 (Flow analysis of 3-Dimensional Power-Augmented Ram Wing in Ground Effect)

  • 곽승현
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.55-64
    • /
    • 1997
  • A wing operating in close proximity to the ground exhibits a reduction in induced drag, which increase the lift/drag ratio. The poert-augmented ram (RAR) phenomenon involves directiing the efflux from forward mounted propulsion ststem under the wings, with the efflux nearly stagnated under the wings. In the present paper, 3 dimentional PAR was numerically studied by solving the Navier-Stokes equations. Pressure distribution and velocity vectors are calculated around the wing surface and the ground. Through the numerical simulation, Cp values and lift/drag ratio are carefully reviewed by changing the height/chord; 0.05, 0.1, 0.3 and 0.8. The shape of model is NACA 0012 with a span/chord ratio of 3.0. According to the numerical results, the relationship between lift/drag and height/chord is fairly reasonable.

  • PDF

익형 표면의 딤플 형상변화에 따른 유동특성 연구 (A Study on the Flow Characteristics of Aircraft Wing Surface with Various Dimple Patterns)

  • 홍우;이종철;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.54-59
    • /
    • 2012
  • In order to have the high efficiency of aircraft wing and to improve the energy efficiency in field of eco-friendly transportation, the performance characteristics of the aircraft wing were studied with the change of lift to drag ratio through the CFD analysis. The design process was focused on generating the high lift force and low drag force as the lift to drag ratio was increased. In this paper, various dimple patterns were numerically designed to investigate the flow characteristics. Hexagon-and circle-shaped dimples, dimple distance and position were changed as the artificial conditions. The numerical analyses were conducted by using the commercial code, ANSYS CFX. Numerical results dependent on the turbulence intensity and lift to drag ratio distribution were graphically depicted for various dimple patterns.

초음속 조건의 플랩을 장착한 Busemann Biplane의 플랩 길이와 각도 변화에 따른 양항비 성능 비교 (THE ANALYSIS OF AERODYNAMIC CHARACTERISTICS FOR BUSEMANN BIPLANE WITH FLAP)

  • 태명식;손찬규;오세종
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.42-50
    • /
    • 2013
  • The supersonic airplane with flapped biplane, Busemann biplane equipped flap, is superior to drag and noise reduction due to wave cancelation effect between upper and lower airfoils. In this study, it is numerically calculated and analyzed the lift, drag and lift to drag ratio of flapped biplane with respect to various the length and angle of the flap. Euler solver of EDISON CFD, web based computational fluid dynamic solver for the purpose of education, is employed. Depending on the length of the flap, lift and drag increase linearly, and there exists the optimum flap angle which maximize the lift-to-drag ratio at the freestream mach 2.0 on-design condition. The predictable relational expression is driven as liner equation. As a results of comparison with drag of flapped biplane, Busemann biplane, and diamond airfoil with the same lift, the drag of flapped biplane is 88.76% lower than that of the Busemann biplane and 70.67% lower than that of the diamond airfoil. In addition, the change of pressure is compared to confirm the noise reduction effect of flapped biplane at h/c=5 of lower airfoil. The shock strength of flapped biplane is smaller than that of other airfoils.

풍력터빈용 날개 설계 및 공력해석에 관한 연구 (A Study on Aerodynamic Analysis and Design of Wind Turbine Blade)

  • 김정환;이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.847-852
    • /
    • 2004
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio. structure. a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method This Process is programed by delphi-language. The Program has any input values such as tip speed ratio blade length. hub length. a section of shape and max lift-to-drag ratio. The Program displays chord length and twist angle by input value and analyzes performance of the blade.

초공동 수중운동체 캐비테이터의 항력과 양력특성에 관한 수치해석적 연구 (Numerical Investigation of Drag and Lift Characteristics of Cavitator of Supercavitating Underwater Vehicle)

  • 강병윤;장세연;강신형
    • 대한기계학회논문집B
    • /
    • 제38권10호
    • /
    • pp.797-805
    • /
    • 2014
  • 본 연구의 목적은 해수 흡입구를 고려한 초공동 수중운동체 캐비테이터의 항력과 양력특성 및 해수 흡입유로의 입구에서 압력손실에 대해 예측하는 것이다. 흡입구 직경과 유로에서의 속도, 흡입구의 곡률반경 및 캐비테이터의 받음각이 미치는 영향에 대해 유동해석을 수행하였다. 연구 결과 직경비가 커지면, 항력계수와 압력손실계수가 감소하며, 속도비가 증가할 때 항력계수와 양력계수는 감소하고 압력손실계수는 증가한다. 해수 흡입구에 곡률을 주면 항력계수와 양력계수에는 영향을 미치지 않지만, 압력손실계수가 크게 감소한다. 캐비테이터의 받음각은 항력계수와 압력손실계수에 미소한 영향만을 주나, 양력계수를 크게 변화시킨다. 초공동 수중운동체 설계 시 본 연구 결과를 반영할 수 있다.