• Title/Summary/Keyword: Lift-down

Search Result 73, Processing Time 0.023 seconds

CFD Study on Aerodynamic Characteristics of Frisbee (CFD를 이용한 Frisbee의 공기역학적 특성에 대한 고찰)

  • Kim C. W.;Chang B. H.;Lee J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.101-104
    • /
    • 2004
  • CFD simulation is peformed for 2D and 3D frisbees flying at 10m/s. For convenience of simulation, rotation of 3D model is not considered. CFD results show that pitching moment makes the nose down and holes at the leading and trailing edges improve the lift characteristics of the frisbee.

  • PDF

Effects of Angular Acceleration on the Friction and Wear Characteristics of Gas Foil Thrust Bearings (회전각가속도가 가스 포일 스러스트 베어링의 마찰 및 마모 특성에 미치는 영향)

  • Sung Ho Hwang;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.203-211
    • /
    • 2023
  • This study experimentally investigates the effects of angular acceleration on the friction and wear performances of a gas foil thrust bearing (GFTB) using a typical GFTB with six pads. The outer radius of the bearing is 31.5 mm, the total bearing area is 2,041 mm2 , and the bump foil and incline (ramp) height are both 500 ㎛. The newly developed GFTB test rig for measuring the friction torque and coefficient measures the axial load, drag torque, lift-off speed, and touch-down speed. The experiment is conducted for angular accelerations of 78.5, 314.2, and 328.3 rad/s2 at axial loads of 5, 10, and 15 N, respectively. The test shows that the start-up friction coefficient increases with increasing axial load at the same angular acceleration, and the friction coefficient decreases with increasing angular acceleration under the same axial load. As the angular acceleration increases, the lift-off speed at the motor start-up increases, and the touch-down speed at the motor stop decreases. The wear distance of the GFTB for a single on/off cycle increases with increasing axial load at the same angular acceleration and decreases nonlinearly with increasing angular acceleration under the same axial load. The test results suggest that adjusting the rotational angular acceleration helps reduce bearing friction and wear.

Development of Non-Motorized Lifting Chair For the Elderly (고령자를 위한 무동력 기립보조의자 개발)

  • Kim, Hyeon Jun;Yeo, Hyeon Jin;Kim, Sung Soo;Chang, Sung Ho;Lee, Sang Ho;Bae, Ik Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.226-232
    • /
    • 2015
  • The aging of Korea is rapidly advancing in an unprecedented rate in the world. Indoor and outdoor safety accidents involving the elderly frequently occur, with elderly population increasing. Because the physical strength of elderly is decreased, it is necessary to develop devices that aid the everyday life of the elderly to prevent safety accidents. Among many activities, the motions of standing from and sitting on a chair require much physical strength from particular body parts, which causes an overload for particular body parts. To the elderly the repeating motion of standing from and sitting down on a chair is burdensome, because they do not have enough physical strength compare to young persons. As a result the elderly could be injured or falling during standing or sitting. Therefore, the development of a lift chair that considers the problems mentioned above is necessary to prevent the safety accidents of the elderly. The study designed a non-motorized lift chair that comfortably aids the standing and sitting down motion for the use of the elderly by reflecting the anthropometric data of the Korean elderly over 65 years old. Also the design was implemented to smoothly aid the standing motion by considering the knee angle of the elderly when standing. Because the regained strength to stand from a chair is depend on the knee angle. Unlike existing lift devices, this device utilizes a tilting mechanism that does not use electric power so that the product could be composed inexpensively than existing chairs released in the market.

Realized Value Creation; New Construction in Constrained Urban In-fill Sites

  • Hadley, Nathaniel C.;Thornton, Charles H.
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.1
    • /
    • pp.33-46
    • /
    • 2018
  • The Case Study prepared by PCPA and Lift Group will identify a growing development problem in urban areas; high value project sites that are restrictive in size or "tight" are underutilized and underdeveloped. In an effort to remedy this problem, our team will evaluate a design program through the lens of both conventional construction and Core Cantilever Construction. It is also important to differentiate between Core Cantilever construction and the plagued "Lift Slab" construction method as they may be confused, due to the top down construction sequence. This article will demonstrate that constraints inherent to conventional construction techniques prohibit economically viable development of these project sites, while Core Cantilever construction methods increase the projects value by reducing construction timelines and increasing the useable floor area.

Control of Flow Around an Airfoil Using Piezo-Ceramic Actuators (압전세라믹 액추에이터를 이용한 익형 후류 제어)

  • Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1112-1118
    • /
    • 2000
  • The objective of this study is to increase lift and decrease drag of an airfoil at high angles of attack by delaying flow separation with piezo-ceramic actuators. The airfoil used is NACA 0012 and its chord length is 0.3m. An experiment is performed at the freestream velocity of 15m/s at which the Reynolds number based on the chord length is $2{\times}10^5$. Seven rectangular actuators are attached to the airfoil surface and move up and down based on the electric signal. Drag and lift are measured using an in-house two-dimensional force-balance and the surface pressures are also measured. At the attack angle of $16^{\circ}$, the separation point is delayed downstream due to momentum addition induced by the movement of the actuators. Lift is increased by 10%, drag is reduced by 37%, and the efficiency is increased up to 170%. The flow fields with and without control are visualized using the smoke-wire and tuft techniques.

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

Motion Characteristics of Particle in Model GIS (모의 GIS내 금속이물의 거동특성)

  • 김경화;이재걸;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.152-159
    • /
    • 1999
  • This paper describes the rmtion characteristics of a particle in GIS under AC voltage. To measure the motion characteristics of the particle, a model gas chamber and parallel plain electrodes were designed and manufactured lift-off voltages of wire and spherical particles on the electrode were calculated and rreasured, and electric charge was calculated. By using a high speed carrera, the rmtion characteristics of various particles with aw}ied voltages, such as motion pattern, lift-off time, lift-off height, were analyzed 1be lift-off voltages were greatly affected by diarreters of wire and spherical particles. At voltage around lift-off voltage, the stand-up particle in vertical state rmved up and down between electrodes and the height of the lift-off particle was low. At voltage around breakdown voltage, the particle repeated vertical rotation a few times while they were being lifted off, and then, they were floating between the electrodes.trodes.

  • PDF

ANALYSIS OF UNSTEADY OSCILLATING FLOW AROUND TWO DIMENSIONAL AIRFOIL AT HIGH ANGLE OF ATTACK (고받음각 2차원 에어포일 주위의 비정상 유동의 진동 특성에 관한 연구)

  • Yoo, J.K.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Missile and fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 50 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure, entropy distribution, etc. are analyzed according to the angle of attack. The results of average lift coefficients are compared with other results according to the angle of attack. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. The primary and secondary oscillating frequencies are analyzed by the effects of these unsteady aerodynamic characteristics.

Control of Nanospacing in TiO2 Nanowire Array Using Electron Beam Lithography

  • Yun, Young-Shik;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.430.1-430.1
    • /
    • 2014
  • According to advanced nanotechnology in the field of biomedical engineering, many studies of the interaction between topography of surfaces and cellular responses have been focused on nanostructure. In order to investigate this interaction, it is essential to make well-controlled nanostructures. Electron beam lithography (EBL) have been considered the most typical processes to fabricate and control nano-scale patterns. In this work, $TiO_2$ nanowire array was fabricated with hybrid process (top-down and bottom-up processes). Nanodot arrays were patterned on the substrate by EBL process (top-down). In order to control the spacing between nanodots, we optimized the EBL process using Poly(methyl methacrylate) (PMMA) as an electron beam resist. Metal lift-off was used to transfer the spacing-controlled nanodots as a seed pattern of $TiO_2$ nanowire array. Au or Sn nanodots which play an important role for catalyst using Vapor-Liquid-Solid (VLS) method were patterned on the substrate through the lift-off process. Then, the sample was placed in the tube furnace and heated at the synthesis temperature. After heat treatment, $TiO_2$ nanowire array was fabricated from the nanodots through VLS method (bottom-up). These results of spacing-controlled nanowire arrays will be used to study the interaction between nanostructures and cellular responses in our next steps.

  • PDF

The Comparative Analysis on the Kinematic Variables according to the Types of Stance in the Dead-lift of Snatch Events of Junior Weight Lifters (주니어 역도 선수 인상 종목의 Dead-lift 동작 시 스탠스유형에 따른 운동학적 변인 비교분석)

  • Chung, Nam-Ju;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.99-107
    • /
    • 2008
  • The aim of this study was to provide fundamental data in training to improve athletes' competitiveness through the comparative analysis of kinematic variables according to the types of stance. For this study, the subjects selected 4 Junior Weight lifters. Subjects performed two type(8-type and 11-type) Dead-lift and their performance was sampled at 60frame/sec. using four high-speed digital video cameras. After digitizing images from four cameras, the two-dimensional coordinates were used to produce three-dimensional coordinates of the 15 body segments(20 joint makers and 2 bar makers). And the results were as follows. 1. As for the time required for stances, 8-type motion was faster than 11-type motion. 2. As for the body-center shift in stances, 8-type motion was bigger than 11-type motion in back and forth motion shift, and 11-type motion was bigger than 8-type motion in right and left, up and down motion shift. 3. As for the speed of a body-center and a babel, 8-type motion was faster than 11-type motion. 4. As for the motion-trace of a babel in stances, 8-type motion was bigger than 11-type in back and forth, right and left motion and 11-type motion was bigger than 8-type in up and down motion. 5. As for the body-angles in stances, 8-type motion was bigger than 11-type in the stance angle, and 11-type motion is bigger than 8-type in the angles of a coxa, a knee and an ankle. As a result of the comparative analysis between 8-type and 11-type stance of Junior Weight lifters dead-lift, both were generally similar in variables, but 8-type motion was more stable than 11-type in aspects of time, speed, center shift, angle change.