• Title/Summary/Keyword: Lifetime estimation

Search Result 233, Processing Time 0.027 seconds

Estimation of Methanol Exposure Level via Alcoholic Beverage Consumed by Jecheon Citizen, South Korea (주류 섭취로 인한 대한민국 제천 시민의 메탄올 노출수준 평가)

  • Oh, Chang-Hwan;Lee, Ye-Ji;Min, Sung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • Quantitative analyses of naturally occurring methanol were performed for the alcoholic beverages commonly consumed in Jecheon, Chungbuk province, South Korea. The headspace analysis method was optimized for the low and high alcoholic beverages. The external standard method was applied due to the overlapping of 2-propanol and 2-butanol (the internal standard candidates) with target sample matrix peaks. The target samples were selected based on the retail sales amounts of alcoholic beverages in the largest retailer food-mart chain, Jecheon, Chungbuk province, South Korea. There was no sample containing methanol over 0.5 $mg/m{\ell}$, the Korean maximum level of methanol in alcoholic beverages (1.0 $mg/m{\ell}$ for fruit originated liquor etc). The total exposure amount of methanol via alcoholic beverages was estimated based on the daily alcohol consumption of 40 g. The hazard indices calculated by methanol RfD 0.5 mg/kg bw day (US EPA) and ADI 20 mg/kg bw day (proposed by Lachenmeier etc.) were 0.301 and 0.008, respectively. As with the hazard index, aggregate exposures below a HI of 1.0 will likely not result in adverse noncancer health effects over a lifetime of exposure. Then the methanol exposure via the alcoholic liquours might not hazard to Jecheon citizen.

Monitoring the performance of a celite-based filter by using electrical resistivity and permeability measurements (전기비저항과 투수계수 측정을 통한 celite가 가미된 필터의 투과 성능 모니터링)

  • Kim, Kyu-Won;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.673-676
    • /
    • 2009
  • Non-point pollutants, which mainly originate from high traffic roads and rural areas, contaminate the environment by flowing into various rivers and lakes and thus are of interest as an environmental issue. Accordingly, efforts have been made to design and maintain efficient filter systems for the control of the non-point pollutants. Meanwhile, clay-type materials are widely used for the absorption of chemicals included in pollutants and the absorption performances of various clays have been reported in the literature. Thus, the present study proposes a non-destructive monitoring method for the performance of a clay-type filter using electrical resistivity measurement. A series of experimental tests is performed on celite-based particulate filters with infiltrating non-point source pollutants having the same characteristics as pollutants on high traffic roads. Each test measures permeability, resistivity of the filter materials and resistivity of the filtrated water. As the particulate filter materials filtrate pollutants and absorb heavy chemicals (e.g., $Cr^{6+}$, lead, nickel, among others), ionic concentration increases resulting as the electrical resistivity decrease. When the filter systems approach the end of their lifetime, the electrical resistivity of the filter material converges to a very low value due to lowered filter absorption efficiency. Hence, the electrical resistivity of the filtrated water also converges to a low value due to high concentrations of heavy metals. The permeability converges to a very low value because of significantly reduced porosity due to clogging and absorption of pollutants on the filter material. The experimental results show that electrical resistivity monitoring of filter materials is a promising approach to estimation of filter performance and its life expectancy.

  • PDF

A Study on the Life Characteristic of an Automotive Water-pump Bearing Using the Accelerated Test Method (가속시험법을 활용한 자동차용 워터펌프 베어링의 수명특성에 관한 연구)

  • Yang, Hui Sun;Shin, Jung Hun;Park, Jong Won;Sung, Baek Ju
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.35-41
    • /
    • 2015
  • A water-pump located in the cooling area of a car circulates cooling water. A particular bearing element, known as a water-pump bearing, installed in the rotating part carries the entire load. The failure of this water-pump bearing has a direct impact on the failure of the automobile engine, and so securing its reliability is crucial. Several researchers have examined the design principles of the water-pump bearing, but there are no reports on the life characteristic of the bearing yet. Herein, we report the construction of test equipment to reproduce the spalling of the roller contact, which is the main failure mode of the chosen water-pump bearing. We chose the radial load as an accelerated stress factor and validated the failure mode by monitoring the surface defects. We conducted the accelerated life test after determining the accelerated stress level through a combination of finite element analysis and a preliminary test. In the life tests, we used an accelerometer to perform failure diagnosis. In the last stage of this study, we present a statistical reliability analysis. Thus, we fully estimated the shape parameter of the water-pump bearing, accelerating level on the load , and the lifetime (MTTF and B10 life) under real use conditions, and finally proposed an interval estimation value considering the uncertainty of the estimated value.

Estimation of Shelf Life for Propellant KM6 by Using Gamma Process Model (감마과정 모델을 이용한 KM6 추진제의 저장수명 예측)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • The aim of the study is to investigate the method to estimate a shelf life of KM6 single base propellant by stochastic gamma process model. The state failure level is assumed that the degradation content of stabilizer is below 0.8%. The constant of time dependent shape function and the scale parameter of stationary gamma process are estimated by moment method. The state distribution at each storage time can be shown from probability density function of deterioration. It is estimated that the $B_{10}$ life, a time at which the cumulative failure probability is 10%, is 25 years and the $B_{50}$ life is 36 years from cumulative failure distribution function curve. The $B_{50}$ life can be treated as the average shelf life from the practical viewpoint and the lifetime can be expressed as distribution curve by using stochastic process theory.

Estimation of GHG emissions and footprint from Daecheong Reservoir using G-res Tool

  • Min, Kyeongseo;Kim, Dongmin;Chung, Sewoong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.209-209
    • /
    • 2022
  • Reservoirs play a key role in the carbon cycle between terrestrial and marine systems and are pathways that release greenhouse gases(GHGs), CO2, CH4, and N2O, into the atmosphere by decomposing organic matters. Developed countries have been actively conducting research on carbon emission assessment of dam reservoirs for over 10 years under the leadership of UNESCO/IHA, but associated research is very rare in Korea. In particular, the GHGs footprint evaluation, which calculates the change in net carbon emission considering the watershed environment between pre- and post- impoundment, is very important in evaluating the carbon emission of hydroelectric dams. The objective of this study was to estimate the GHG emissions and footprints in Daecheong Reservoir using the G-res Tool, an online platform developed by UNESCO/IHA. The G-res Tool estimates CO2 and CH4 emissions in consideration of diverse pathway fluxes of GHGs from the reservoir and characterizes changes in GHG fluxes over 100 years based on the expected lifetime of the dam. The input required to use the G-res Tool include data related to watersheds, reservoirs, and dams, and most were collected through the government's public portal. As a result of the study, the GHG footprint of Daecheong Reservoir was estimated to be 93 gCO2eq/m2/yr, which is similar to that of other reservoirs around the world in the same climate zone. After impoundment, the CH4 diffusion emission from the reservoir was 73 gCO2eq/m2/yr, also similar to those of the overseas reservoirs, but the CH4 bubbling emission, degassing emission, and CO2 diffusion emissions were 44, 34, 252 gCO2eq/m2/yr, respectively, showing a rather high tendency. Since the dam reservoir carbon footprint evaluation is essential for the Clean Development Mechanism evaluation of hydroelectric power generation, continuous research is needed in the future. In particular, experimental studies that can replace the emission factors obtained from the overseas dam reservoirs currently used in the G-res Tool should be promoted.

  • PDF

Comparative Study of AI Models for Reliability Function Estimation in NPP Digital I&C System Failure Prediction (원전 디지털 I&C 계통 고장예측을 위한 신뢰도 함수 추정 인공지능 모델 비교연구)

  • DaeYoung Lee;JeongHun Lee;SeungHyeok Yang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.1-10
    • /
    • 2023
  • The nuclear power plant(NPP)'s Instrumentation and Control(I&C) system periodically conducts integrity checks for the maintenance of self-diagnostic function during normal operation. Additionally, it performs functionality and performance checks during planned preventive maintenance periods. However, there is a need for technological development to diagnose failures and prevent accidents in advance. In this paper, we studied methods for estimating the reliability function by utilizing environmental data and self-diagnostic data of the I&C equipment. To obtain failure data, we assumed probability distributions for component features of the I&C equipment and generated virtual failure data. Using this failure data, we estimated the reliability function using representative artificial intelligence(AI) models used in survival analysis(DeepSurve, DeepHit). And we also estimated the reliability function through the Cox regression model of the traditional semi-parametric method. We confirmed the feasibility through the residual lifetime calculations based on environmental and diagnostic data.

Adaptive Color Correction Method to Monitor in Color Laser Printer (모니터에 적응적인 칼라 레이저 프린터의 색 변환 방법)

  • Jang, In-Su;Son, Chang-Hwan;Kim, Kyung-Man;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.63-68
    • /
    • 2010
  • The Color Management System in recent printers adopts ICC profiles for both monitors and printers. However, the ICC profile doesn't contain the characteristics of reproduced color on each monitor, because the color on each monitor is changed by user adjustment such as color temperature, brightness, and contrast adjustment. It is also depended on the backlight type and lifetime. As a result, unwanted color is reproduced on the printed paper, not like that on the monitor. To overcome the color difference between monitors and printers, it is needed to control the information of ICC profile. That is, first, the ICC profile is generated by the measurement of monitors having user set, then, through the CMS, the color on monitors can be produced on printed paper. However, it is difficult to apply the above system for normal users due to absence of measuring equipment and time consuming process. Therefore, this paper proposes a novel color matching technique based on the estimation of condition for each monitor having user set. The estimation is performed by a simple comparison visual test using a test image on printed paper and monitor. Then, the condition of monitor is applied to the ICC profile. As a result, the new ICC profile contains the color difference between user monitor and printer. The experimental results show the printed images using our proposed method have almost similar color with those on monitors.

Estimation of Gas-particle partitioning Coefficients (Kp) of Carcinogenic polycyclic Aromatic hydrocarbons in Carbonaceous Aerosols Collected at Chiang - Mai, Bangkok and hat-Yai, Thailand

  • Pongpiachan, Siwatt;Ho, Kin Fai;Cao, Junji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2461-2476
    • /
    • 2013
  • To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days st three different atmospheric layer at the heart of chiang-Mai, bangkok and hat-Yai from December 2006 to February 2007. A DRI model 2001 Themal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon(OC) and elemental carbon content in $PM_{10}$. Diurnal and vertical variability was also carefully investigated. In general, OC and EC contenttration shoeed the highest values at the monitoring period o 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis nighttime. Morning peaks of carboaceous compounds were observed during the sampling period of 06:00 -09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime partculate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifrtime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approsimately ten time shigher then those air sample collected at prince of songkla University Hat-Yai campus corpse incinerator and fish-can maufacturing factory but only slightly higher than those of rice straw burnig in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in $PM_{10}$, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas-particle partitioning of low molecular weight PAHs, whereas both absorption and adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor role in gas-partcle partitiining of PAHs in Chiang-Mai, Bangkok and hat-Yai.

Preliminary Estimation of Activation Products Inventory in Reactor Components for Kori unit 1 decommissioning (고리1호기 해체시의 원자로 구조물에서의 방사회 생성물 재고량 예비평가)

  • Lee, Kyung-Jin;Kim, Hak-Soo;Sin, Sang-Woon;Song, Myung-Jae;Lee, Youn-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.109-116
    • /
    • 2003
  • Based on the necessity to evaluate the activation products inventory during decommissioning lot domestic nuclear power plants, a preliminary estimation of the activation products inventory for Kori unit 1, which is getting close to the end of lifetime, was carried out with ANISN and ORIGEN2 code. In order to calculate neutron nux using ANISN code, the reactor was divided into 9 zones from core to bioshield concrete for radial direction. Also :he cross-section of main nuclides were calibrated with neutron flux in the reactor pressure vessel(RPV) region. The results showed that 95 % of tile total radioactivity in RPV from reactor shutdown to 10 years came from the nuclides of $^{55}Fe,\;^{59}Ni,\;^{63}Ni\;and\;^{60}Co$. And the total radioactivity with cooling of more than 50 years after decommissioning was no more than 0.2 % of at the time of shutdown. Considering the weight of RPV is 210 tons, the total radioactivity of RPV reached to $5.25{\times}10^{6}GBq$ at shutdown time. As compared with the total radioactivity of bioshield concrete at reactor shutdown time, the radioactivity after tooling more than 10 years was below 1 %.

Comparison of Measured Natural Frequencies of a Railway Bridge Specimen Between Different Excitation Methods (철도교량 시험체의 가진방법에 따른 고유진동수 측정치 변동에 대한 비교 분석)

  • Kim, Sung-Il;Lee, Jungwhee;Lee, Pil-Goo;Kim, Choong-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.535-542
    • /
    • 2010
  • Precise estimation of a structure's dynamic characteristics is indispensable for ensuring stable dynamic responses during lifetime especially for the structures which can experience resonance such as railway bridges. In this paper, the results of forced vibration tests of different excitation methods (vibration exciter and impact hammer) are compared to examine the differences and the cause of differences of extracted natural frequencies. Consequently a natural frequency modification method is suggested to eliminate effects of non-structural disturbance factors. Also, sequential forced vibration tests are performed before and after track construction according to the construction stage of a railway bridge, and the variation of natural frequencies are examined. Effect of added mass of vibration exciter and variation of support condition due to the level of excitation force are concluded as the major cause of natural frequency differences. Thus eliminating these effects can enhance the reliability of the extracted natural frequencies. Construction of track affects not only the mass of structure but also the stiffness of the structure. Also, the amount of increase in stiffness varies according to the level of structural deflection. Therefore, reasonable estimation of the level of structural response during operation is important for precise natural frequency calculation at design phase.