• 제목/요약/키워드: Life-cycle assessment

검색결과 724건 처리시간 0.034초

An integrated monitoring system for life-cycle management of wind turbines

  • Smarsly, Kay;Hartmann, Dietrich;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.209-233
    • /
    • 2013
  • With an annual growth rate of about 30%, wind energy systems, such as wind turbines, represent one of the fastest growing renewable energy technologies. Continuous structural health monitoring of wind turbines can help improving structural reliability and facilitating optimal decisions with respect to maintenance and operation at minimum associated life-cycle costs. This paper presents an integrated monitoring system that is designed to support structural assessment and life-cycle management of wind turbines. The monitoring system systematically integrates a wide variety of hardware and software modules, including sensors and computer systems for automated data acquisition, data analysis and data archival, a multiagent-based system for self-diagnosis of sensor malfunctions, a model updating and damage detection framework for structural assessment, and a management module for monitoring the structural condition and the operational efficiency of the wind turbine. The monitoring system has been installed on a 500 kW wind turbine located in Germany. Since its initial deployment in 2009, the system automatically collects and processes structural, environmental, and operational wind turbine data. The results demonstrate the potential of the proposed approach not only to ensure continuous safety of the structures, but also to enable cost-efficient maintenance and operation of wind turbines.

리기다소나무 구조용 집성재를 활용한 아치 트러스 목조교량의 전과정평가 (Life Cycle Assessment of Timber Arch-Truss Bridge by Using Domestic Pinus rigida Glued-Laminated Timber)

  • 손휘림;박주생;김광모
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권1호
    • /
    • pp.1-12
    • /
    • 2014
  • 본 연구에서는 리기다소나무 구조용 집성재를 사용한 국내 최초 차량용 목조교량에 대한 지구온난화 영향을 평가하기 위해 전과정평가를 수행하였다. 교량연장 30 m, 교량폭원 8.4 m, 교량등급 1등급인 아치 트러스 형태의 대상 교량은 원료채취부터 제조, 수송, 시공, 사용, 해체, 건설폐기물 수송, 폐기 및 재활용까지 설계수명 50년간 총 192.56 ton $CO_2$ eq.의 온실가스를 배출한다. 전과정단계 중 원료채취 및 제조단계에서 총 온실가스 배출량의 81.14%를 배출하며 특히, 콘크리트 사용으로 인하여 82.84 ton $CO_2$ eq.의 온실가스가 배출된다. 그러나 대상 교량은 $116.57m^3$의 국산 리기다소나무 집성재를 사용하였으며, 교량을 구성하는 목재에서 104.72 ton의 이산화탄소를 저장하고 있어 이를 적용할 경우, 총 온실가스 배출량의 54.38%를 저감 가능한 것으로 도출되었다. 대상 교량과 동일한 수명과 구조를 갖는 타 교량의 철골자재를 구조용 집성재로 대체할 경우, 원료채취 및 제조단계의 온실가스 배출량을 최소 10.26%에서 최대 23.91%까지 저감 가능한 것으로 도출되었다. 본 연구의 결과는 향후 국산 목재 및 목조교량의 친환경적 우수성을 정량적으로 입증할 수 있는 기반자료로 활용 가능할 것이며, 목조교량의 친환경적 설계와 보급을 위해 활용 가능할 것으로 사료된다.

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

협업설계 환경에서의 지식기반 근사적 전과정평가 시스템 (Knowledge-based Approximate Life Cycle Assessment System in a Collaborative Design Environment)

  • 박지형;서광규;이석호;이영명
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.877-880
    • /
    • 2003
  • In a competitive and globalized business environment, the need for the green products becomes stronger. To meet these trends, the environmental assessment besides delivery, cost and quality of products should be considered as an important factor in new product development phase. In this paper. a knowledge-based approximate life cycle assessment system (KALCAS) for the collaborative design environment is developed to assess the environmental impacts in context of product concept development. It aims at improving the environmental efficiency of the product using artificial neural networks consisting of high-level product attributes and LCA results. The overall framework of the collaborative environment including KALCAS is proposed. This architecture uses the CO environment to allow users on a wide variety of platforms to access the product data and other related information. It enables us to trade-off the evaluation results between the objectives of the product development including the approximate environmental assessment in the collaborative design environment.

  • PDF

촉매반응에 의한 에탄올 생산공정의 전 과정 평가 (Life Cycle Assessment of Ethanol Production Process Based on Catalytic Reaction)

  • 정연수;황일훈;여영구;주오심;정광덕
    • Korean Chemical Engineering Research
    • /
    • 제44권3호
    • /
    • pp.323-327
    • /
    • 2006
  • 이 논문에서는 전 과정 평가 기법을 이용하여 촉매반응에 의한 에탄올 생산공정의 환경적 가치를 평가하고 발효에 의한 에탄올 생산공정과 그 환경성을 비교하였다. 평가의 목적은 두 공정의 환경성 비교를 통하여 보다 환경 친화적인 공정 개발을 위한 방안을 마련하는데 있었다. 두 공정에서 생산되는 에탄올의 소비 및 폐기 과정은 모두 동일하다고 가정하고 원료물질의 획득으로부터 제품의 생산 과정에 대한 전 과정 평가를 실시하였다. 촉매공정에 대한 전 과정 목록분석을 통해 중간 원료인 메탄올의 생산 과정에서 발생하는 이산화탄소가 주요 환경오염인자라는 것을 확인하였다. 두 공정에 대한 영향평가의 결과 비교를 통하여 발효에 의한 에탄올 생산이 촉매반응에 의한 것보다 환경 친화적이라는 것을 확인하였다. 전 과정 평가의 결과를 바탕으로 공정의 환경성 개선을 위한 방안을 제시하였다.

Evaluation of monthly environmental loads from municipal wastewater treatment plants operation using life cycle assessment

  • Piao, Wenhua;Kim, Ye-jin
    • Environmental Engineering Research
    • /
    • 제21권3호
    • /
    • pp.284-290
    • /
    • 2016
  • Life cycle assessment (LCA) methodology can be used to assess impacts on the environment that might be generated during treatment of wastewater and sludge treatment. In this work, LCA methodology was suggested to evaluate monthly environmental impact of wastewater treatment plants (WWTPs). Two field scale WWTPs, A2/O process and conventional activated sludge process (CAS), were selected as target plants and the operational data were collected from those plants. As the function units, the unit volume of treated wastewater of $1m^3$ and 1 kg T-N eq. removed were selected. The environmental effect of target WWTPs operation were assessed as impact categories such as global warming potential, eutrophication potential, and so on. From monthly profiles of each index, it was shown that the environmental impact of WWTPs has seasonal patterns influenced by the influent flow rate variation causing higher impacts in winter than summer. This is due to the fact that there were no significant increase in the electricity consumption and chemical usage during the summer while the treated volume of wastewater was increased.

공정폐열의 자원순환 네트워크 구성을 위한 전과정 평가 및 생태효율성 분석 (Life Cycle Assessment and Eco-efficiency Analysis for the Resource-circulation Network of Waste Heat Generated from Industrial Process)

  • 신춘환;박도현;김지원
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.281-289
    • /
    • 2013
  • For the purpose of evaluating the eco-efficiency(EE) on surplus heat generated from industrial process, techniques of life cycle assessment are adopted in this study. Because it can be indicated both environmental impacts and economic benefits, EE is well known as a useful tool for symbiosis network on the sustainable development of new projects and businesses. To evaluate environmental impacts, the categories were divided into two areas of resource depletion and global warming potential. It can be seen that environmental impact increased a little but much higher economic benefit on the company, environmental performance and economic value were improved on the apartment by the district heating, respectively. In result, eco-industrial park(EIP) project on surplus heat should be found sustainable new business because the EE was in the area of fully positively eco-efficiency and, moreover resource depletion was taken place than the reduction of greenhouse gas.

전과정평가 방법에 의한 외끌이 대형기선저인망 어업의 온실 가스 배출량의 정량적 분석 (A Quantitative Analysis of Greenhouse Gas Emissions from the Danish Seine Fishery using Life Cycle Assessment)

  • 이지훈;이춘우;김지은
    • 한국수산과학회지
    • /
    • 제48권2호
    • /
    • pp.200-206
    • /
    • 2015
  • The fishing industry has a negative effect on the environment due to greenhouse gas (GHG) emissions with the high use of fossil fuels, the destruction of underwater ecosystems by bottom trawls, reduction in resources by fishing, and altered ecosystem diversity. GHG emissions from fisheries were discussed at the Canc$\acute{u}$n meeting in Mexico in 1992 and are part of the Kyoto protocol in 2005. However, few studies have investigated the GHG emissions from Korean fisheries. To find a way to reduce GHG emissions from fisheries, quantitative analysis of GHG emissions from the Korean fishery industry is needed. Therefore, this study investigated the GHG emissions from the Korean Danish seine fishery using the life cycle assessment (LCA) method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel-use coefficient of the fishery is also calculated. The GHG emissions from the representative fish caught by the Danish seine fishery are considered and the GHG emissions for the edible weight of fishes are calculated, considering consumption in different areas and different slaughtering processes. The results will help to understand the GHG emissions from Korean fisheries.

CdTe 태양광 발전 시스템의 전과정평가 (Life Cycle Assessment of CdTe Photovoltaic System)

  • 김연희;허진호;정재우;강정림;최종두
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • The conventional energy-production system by burning fossil fuels releases many pollutants and carbon dioxide($CO_2$) to the environment. Therefore, many countries pay attention to new and renewable energy and invest in the development of these new technologies for the future energy security. One of the most promising of these technologies is a photovoltaic system. In this study, Life Cycle Assessment(LCA) is carried out to analyse the environmental issues(e.g. global warming, abiotic resource depletion) of CdTe photovoltaic system. The spatial and temporal scope of this study was set in Korea during 2004~2005. We assumed that CdTe photovoltaic system was installed in Mokpo where the amount of solar irradiation was higher than other places in Korea. Based on the present data and some assumptions, greenhouse gas emission was 39.2g $CO_2$-eq./kWh. Therefore the electricity produced by CdTe photovoltaic system is more environmentally friendly than the conventional power generation system.

  • PDF

사무소 건축물의 공조시스템 대수제어 여부에 따른 LCC 분석 (Life Cycle Costing through Operating Number Control of Air Conditioning Systems in Office Buildings)

  • 박률;정순성
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.981-988
    • /
    • 2002
  • Generally, the term "energy saving is economical" is appropriate for the national view point and for design and assessment of one system, but not appropriate when choosing the system by comparing alternative systems in the early design step. Sometimes, non-energy saving system is more economical than energy saving system because of the price of electricity, gas or oil, which are used for operating the air conditioning system. Therefore, when designing the system, we should consider the efficient alternatives through economic assessment of energy saving method. However, research on non-operating number control of the system is not sufficient because it is more common to use operating number control of the system for most economic assessment of air conditioning system. For this reason, this research can provide the economics through operating number control as basic design data. The data obtained through assesment of Life Cycle Cost based on amount of yearly energy use, were produced by system simulation of HASP/ACLD/8501 and HASP/ACSS/8502 for six alternative heating/cooling systems based on constant air volume conditioning system, which is widely used for medium and large office buildings in Busan.