• Title/Summary/Keyword: Life cycle impact assessment

Search Result 248, Processing Time 0.027 seconds

Basic Design of Software for Environmental Life-Cycle Assessment of Electric Motor Unit(EMU) (전동차 환경 전과정 평가(LCA)를 위한 소프트웨어 기본설계)

  • Kim Yong-Ki;Lee Jae-Young;Moon Kyeong-Ho;Mok Jai-Kyun;Eun Jong-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1033-1038
    • /
    • 2005
  • As a global effort to conservate the environment, life cycle assessment(LCA) which considers the environmental impact through the life cycle of a product, from acquiring of resources to scrapping, has been actively applied. The LCA is a tool to calculate quantitatively the environmental impacts caused by products or services through their life cycles. The list of numerous data should be analyzed, stored and conducted in order to assess the environmental impacts. Therefore, it is necessary to develop a software for LCA, which can perform the interpretation as well as the environment impact assessment to execute the analysis of such a large number of data effectively. At this time, for the existing some kinds of general LCA softwares, the information about all of input and output should be fed directly and the conclusion is deduced by linking to the database from the public authorized organizations. That makes it possible to evaluate the environmental grades accurately, but it is too slow and difficult for general users to operate and applied it into an electric motor unit(EMU). Therefore, in this research, the basic model was designed, which is based on construction of database structure of the software and organization of architecture, to develop an advanced software for EMU according to user and purpose of it by benchmarking of domestic and international softwares. The result of this study would be applied to develop the LCA software in the future.

  • PDF

A Study on Environmental Impact Evaluation of Metallic Can Using Life Cycle Assessment (전과정평가(LCA)를 이용한 금속캔의 환경성 평가에 관한 연구)

  • Baek, Seung-Hyuk;Kim, Hyung-Jin;Kwon, Young-Shik;Kim, Seung-Sup;Choi, Yoon-Geun;Chung, Chan-Kyo
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1395-1401
    • /
    • 2011
  • In this study, Life Cycle Assessment(LCA) has been carried out to evaluate the environmental impacts of a metallic can. A 360 mL volume of an aluminum can bottle was used as the functional unit. The results of Life Cycle Inventory(LCI) showed that iron ore and coal were the major parts of the input materials, whereas aluminum can products, carbon dioxide, wastewater, and hazardous wastes were those of the output ones. According to LCA weighting, it was observed that the most significant impact potential was found to be global warming(49.11%) followed by abiotic resource depletion(47.72%). In the whole system, cold rolled steel coil showed the largest environmental impact potential(86%), followed by electricity(14%). Meanwhile, lubricating oil and industrial water had the minor portion of the total environmental impact potentials. It was suggested that the use of cold rolled steel and electricity should be the main source for $CO_2$, resulting in the big impact on global warming.

A Study on the Characteristics of Environmental Impact in Construction Sector of High-Speed Railway using LCA (LCA를 이용한 고속철도 건설단계에서의 환경부하 특성에 관한 연구)

  • Lee, Cheol;Lee, Jae-Young;Jung, Woo-Sung;Hwang, Young-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.178-185
    • /
    • 2014
  • This study investigates the characteristics of environmental impact from the construction phase of a high-speed railway through a Life Cycle Assessment method based on the materials used and the energy consumption of the equipment used according to the design statement. The results reveal that the contributions to environmental impact in the construction sector of a high-speed railway were 89% for civil engineering, 7% for the track system, 2% for stations and 2% for the energy and telecommunication system. In particular, the highest contribution to the impact in the civil engineering category were 54% for Global Warming, 25% for Abiotic Resource Depletion and 8% for Photochemical Oxidant Creation. The main influence factors were the use of remicon and cement. In future, the application of Life Cycle Assessment for the construction sector of railway construction will introduce efficient reduction methods according to the quantitative calculation of environmental impact.

Development of the Assessment Framework for the Environmental Impacts in Construction

  • Tahoon Hong;Changwoon Ji;Kwangbok Jeong;Joowan Park
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.196-203
    • /
    • 2013
  • Environmental problems like global warming have now become important issues that should be considered in all industries, including construction. In South Korea, many studies have been conducted to achieve the government's goals of reduction in environmental impacts. However, the research on buildings has only focused on CO2 emission as a research target despite the fact that other environmental impacts resulting from ozone depletion and acidification should also be considered, in addition to global warming. In this regard, this study attempted to propose assessment criteria and methods to evaluate the environmental performance of the structures from various aspects. The environmental impact category can be divided into global impacts, regional impacts, and local impacts. First, global impacts include global warming, ozone layer depletion, and abiotic resource depletion, while regional impacts include acidification, eutrophication, and photochemical oxidation. In addition, noise and vibration occurring in the building construction phase are defined as local impacts. The evaluation methods on the eight environmental impacts will be proposed after analyzing existing studies, and the methods representing each environmental load as monetary value will be presented. The methods presented in this study will present benefits that can be obtained through green buildings with a clear quantitative assessment on structures. Ultimately, it is expected that if the effects of green buildings are clearly presented through the findings of this study, the greening of structures will be actively expanded.

  • PDF

Life Cycle Impact Assessment to Corn Field Appling Anaerobic and Aerobic Digestates Including Each Swine Waste Treatment System (돈분처리 시스템을 포함한 액비 시용에 따른 옥수수 재배과정에 대한 전과정 환경영향 평가)

  • Shin, Joung-Du;Lee, Sun-Il;Park, Woo-Kyun;Choi, Yong-Su;Na, Young-Eun;Park, Yoo-Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.35-43
    • /
    • 2014
  • The application of the Life Cycle Impact Assessment (LCIA) methodology to analyze the environmental burden of appling the digestates to corn field including different swine waste treatment systems was investigated. The first part of LCA is an inventory of parameters used to emissions released due to the system under investigation. In the following step, the Life Cycle Impact Assessment, the inventory data were analyzed and aggregated in order to finally get one index representing the each environmental burden. Each corn field applied with the aerobic and anaerobic digestates including different swine waste treatment systems was used as an example for the life cycle impact analysis. With analyzing the agricultural environmental burden, it observed that the effect of corn field applied aerobic digestate including digestion system was 7.6 times higher at eutrophication effects, but global warming potential effect was 0.9 times less than its applied anaerobic digestate.

Optimization of wastewater electrolysis using life cycle assessment and simulated annealing

  • Chun Hae Pyo;Chon Hyo-Taek;Kim Young Seok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.518-521
    • /
    • 2003
  • LCA (Life Cycle Assessment), that unifies the scale of various environmental impacts, and simulated annealing are applied to optimizing electrolysis of wastewater from PCB (Printed Circuit Board) production. The changes of environmental impact can be quantified with LCA and the total changes of environmental impacts can be expressed as a function of power consumed, Cu recycled, $Cl_2$, NOx and SOx discharged through restriction of feasible reactions. In a single-variate condition, the environmental optimum can be easily obtained through plotting and comparing each environmental impact value. In 8V potentiostatic electrolysis, the lowest environmental impact can be achieved after 90min. To optimize a multi-variate conditional system, simulated annealing can be applied and this can give the quick and near optimum in complex systems, where many input and output materials are involved, through experimentally measured values without a theoretical modeling.

  • PDF

Establishment of Life Cycle Management(LCM) System for Water Supply and Sewerage Systems (상하수도시설에 대한 전과정관리(LCM)시스템 구축방안 연구)

  • Park, Ji-Hyoung;Hwang, Young-Woo;Kim, Young-Woon;Park, Kwang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.303-312
    • /
    • 2012
  • Water supply and sewerage systems are the large-scale urban infrastructure ejecting large amount of environmental load over the life-cycle. Therefore, it is important not only to optimize in the aspect of economical superiority and process efficiency but also to consider earth scale environmental impact. This study aimed to suggest the establishment of life cycle management(LCM) system as an integrated management solution in urban water supply and sewerage systems. As a result, the methodology for LCM system consisting of life cycle assessment(LCA), life cycle cost(LCC), life cycle $CO_{2}(LCCO_{2})$ and life cycle energy(LCE) was developed. Also, several case studies using the latest statistics data of water supply and sewerage systems were carried out to investigate the field applicability of LCM.

An E-score Development Methodology for Life Cycle Impact Assessment

  • Young-Min Park;Jai-Rip Cho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.68
    • /
    • pp.51-65
    • /
    • 2001
  • This study is to make LCIA(Life Cycle Impact Assessment) easier as a methodology of environmental scores(called E-score) that integrated environmental load of each emission substance based on environmental damage such as in human health, ecosystem and resources category. The concept is to analyzes the LCI(Life Cycle Inventory) and defines the level of environment damages for human health, ecosystem and resources to objective impact assessment standard, and makes the base of marginal damage to calculate the damage factor, which can present the indication that can establish the standard value of environmental impact. First, damages to human health are calculated by fate analysis, effect analysis and damage analysis to get the damage factor of health effect as a DALY(Disability Adjusted Life Years) unit. Second, damages to ecosystem are calculated by fate analysis, effect analysis and damage analysis to get the damage factor of the effect as a PDF(Potentially Disappeared Fraction) unit through linking potentially increased disappeared fraction. Third, damages to resources are carried out by resource analysis and damage analysis for linking the lower fate to surplus energy conception to get damage factor as a MJ(Mega Joule) unit. For the ranking of relative environment load level each other, LCIA can be carried out effectively by applying this E-score methodology to the particular emission substances. A case study has been introduced for the emission substances coming out of a tire manufacturer in Korea. It is to show how to work the methodology. Based on such study result, product-designers or producers now can apply the E-scores presented in this study to the substances of emission list, and then calculate the environment load of the product or process in advance at any time and can see the environment performance comparatively and expected to contribute to the environmental improvement in view of environmental pollution prevention.

  • PDF

Environmental Impact Assessment of Buildings based on Life Cycle Assessment (LCA) Methodology (전과정평가(LCA) 방법을 이용한 건축물에 대한 환경영향 평가 방법)

  • Hong, Tae-Hoon;Ji, Chang-Yoon;Jeong, Kwang-Bok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.84-93
    • /
    • 2012
  • Most of the studies on reduction of buildings' environmental burden in the construction industry have been focused on carbon dioxide emission, although there are various kinds of environmental issues such as global warming, acidification, and etc. which are considered by many researchers. Therefore, this study defined and suggested six impact categories and the principles to assess each impact for the assessment of comprehensive environmental impacts of buildings. The six impact categories are abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, and photochemical oxidation. A case study has been conducted through comparative analysis of two structural design alternatives to confirm the necessity of assessing the six impact categories. That is, the results of global warming potential and the six impacts proposed in this study were compared. By comparing the results of only global warming potential, the second design alternative using 24MPa concrete was chosen as a better alternative, while the first design alternative using 21MPa concrete was resulted as a better alternative when six impact categories were considered. The results mean that the assessment of various environmental impacts is an appropriate and reasonable approach and the comprehensive assessment offers more reliable results of environmental impacts in the building construction.

Environmental Impact Assessment in LCA Using Analytic Network Process (네트워크구조 의사결정기법을 이용한 LCA 환경영향평가)

  • 강희정
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.612-620
    • /
    • 1999
  • Environmental impact assessment in the step of the Life Cycle Assessment (LCA) measures relative values of importance or weight of the environmental load characterized in the inventory analysis. The weight measurements are used to evaluate the environmental load or the effect of the industrial product or technology. In this paper the Analytic Network Prpcess (ANP) is introduced to calculate a relative weighting of the environmental impact. The ANP is considered as one of the useful decision making framework and allow for more complex interrelationships, feedback, and inner/outer dependence among the decision level and factors. The weighting from the ANP may applied to obtain the overall evaluation value of environmental load.

  • PDF