• Title/Summary/Keyword: Life Ion

Search Result 912, Processing Time 0.038 seconds

The Effect of Ethanol on 5-Hydrosytryptamine Receptor-Mediated Ion Current in Cultured NCB-20 Neuroblastoma Cells

  • Woo, Hyo-Geyng;Chung, In-Kyo;Cho, Goon-Jae;Chung, Yong-Za;Il Yun
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.82-85
    • /
    • 1999
  • The effects of ethanol on 5-hydrosytryptamine(5-HT3) receptor-mediated ion current were evaluated in whole-cell patch-clamp recordings from NCB-20 neuroblastoma cells. The physiologic and pharmacologic properties of 5-HT-activated ion current in NCB-20 cells indicated that it was mediated by 5-HT3 receptors. Ethanol(25-100mM) potentiated 5-HT3 receptor-mediated current in a concentration-dependent manner.

Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 이온교환막의 수명 예측)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • Vanadium redox flow battery (VRFB) is an energy conversion device in which charging and discharging are alternatively carried out by oxidation and reduction reactions of vanadium ions with different oxidation states. VRFB consists of electrolyte, electrode, ion-exchange membrane, etc. The role of ion-exchange membranes in VRFB separates anolyte and catholyte and provides a high conductivity to hydrogen ions. Recently much attention has been devoted to develop ideal ion-exchange membranes for VRFB. A number of developed ion-exchange membranes should be evaluated to find out ideal ion-exchange membranes for VRFB. Long-term durability test is a crucial characterization of ion-exchange membranes for commercialization, but is very time-consuming. In this study, the life time prediction protocol of ion-exchange membranes in VRFB cell tests was developed through short-term single cell performance evaluation (real total operation time, 87.5 hrs) at three different current densities. We confirmed a decrease in test time up to 96.2% of real durability tests (expected total operation time, 2,296 hrs) and 5~6% of relative error discrepancy between the predicted and the real life time in a unit cell.

Haloperidol Induces Calcium Ion Influx Via L-Type Calcium Channels in Hippocampal HN33 Cells and Renders the Neurons More Susceptible to Oxidative Stress

  • Kim, Hyeon Soo;Yumkham, Sanatombi;Choi, Jang Hyun;Kim, Eung-Kyun;Kim, Yong Sik;Ryu, Sung Ho;Suh, Pann-Ghill
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.51-57
    • /
    • 2006
  • Haloperidol is a classical neuroleptic drug that is still in clinical use and can lead to abnormal motor activity following repeated administration. However, there is little knowledge of how it triggers neuronal impairment. In this study, we report that it induced calcium ion influx via L-type calcium channels and that the elevation of calcium ions induced by haloperidol appeared to render hippocampal cells more susceptible to oxidative stress. Indeed, the level of cytotoxic reactive oxygen species (ROS) and the expression of pro-apoptotic Bax increased in response to oxidative stress in haloperidol-treated cells, and these effects were inhibited by verapamil, a specific L-type calcium channel blocker, but not by the T-type calcium channel blocker, mibefradil. These findings indicate that haloperidol induces calcium ion influx via L-type calcium channels and that this calcium influx influences neuronal fate.

Diversity of Ion Channels in Human Bone Marrow Mesenchymal Stem Cells from Amyotrophic Lateral Sclerosis Patients

  • Park, Kyoung-Sun;Choi, Mi-Ran;Jung, Kyoung-Hwa;Kim, Seung-Hyun;Kim, Hyun-Young;Kim, Kyung-Suk;Cha, Eun-Jong;Kim, Yang-Mi;Chai, Young-Gyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.337-342
    • /
    • 2008
  • Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to $10^{th}$ passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of $K^+$ currents, including noise-like $Ca^{+2}$-activated $K^+$ current ($IK_{Ca}$), a transient outward $K^+$ current ($I_{to}$), a delayed rectifier $K^+$ current ($IK_{DR}$), and an inward-rectifier $K^+$ current ($K_{ir}$) were heterogeneously present in these cells, and a TTX-sensitive $Na^+$ current ($I_{Na,TTX}$) was also recorded. In the RT-PCR analysis, Kv1.1,, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, ($I_{Na,TTX}$) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs.

Organic Solvents Containing Zwitterion as Electrolyte for Li Ion Cells

  • Krishnan, Jegatha Nambi;Kim, Hyung-Sun;Lee, Jae-Kyun;Cho, Byung-Won;Roh, Eun-Joo;Lee, Sang-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1705-1710
    • /
    • 2008
  • Imidazolium based zwitterions, 1,2-dimethylimidazolium-3-n-propanesulfonate (DMIm-3S) and 1-Butylimidazolium-3-n-butanesulphonate (BIm-4S), were synthesized, and utilized them as additive for Li ion cell comprising of graphite anode and $LiCoO_2$ cathode. The use of 10 wt% of DMIm-3S in 1 M $LiPF_6$, EC-EMCDMC (1:1:1 (v/v)) resulted in the increased high rate charge-discharge performance. The low temperature performance of the Li ion cells at about −20 ${^{\circ}C}$ was also enhanced by these zwitterion additives. The DMIm- 3S additive resulted in the better capacity retention by the Li-ion cells even after 120 cycles with 100% depth of discharge (DOD) at 1 C rate in room temperature. Surface morphology of both graphite and $LiCoO_2$ electrode before and after 300 cycles was studied by scanning electron microscopy. An analogous study was performed using liquid electrolyte without any additive.

Abatement of Metal Ion Contents from Cotton Linter for the Manufacture of Regenerated Cellulose (방직용 재생섬유 제조를 위한 면 린터의 금속이온 함량 저감에 관한 연구)

  • Park, Hee Jeong;Son, Ha Neul;Choi, Jin Sung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.17-23
    • /
    • 2013
  • The reduction of metal ion from the cotton linter for the preparation of NMMO (N-methylmorpholine N-oxide)-based dissolving pulp was investigated. The NMMO-based dissolving pulp was usually used for the manufacture of high quality fabrics, and need to have high alpha cellulose content and high brightness. NMMO, which is environmentally friendly, and reusable after recovering process, is very sensitive to the metal ions such as Cu, Fe, Mg, and Cr. Electron beam, sulfuric acid, acetic acid, and ozone treatment before bleaching were used and the concentration changes of the metal ions were compared to that of EDTA, a chelating agent. It was found that both acid treatments (sulfuric and acetic acid) were very effective and comparable to EDTA treatment at the same dosage in metal ion reduction, but electron beam and ozone treatment were not. The sulfuric acid treatment turned out to be effective in metal ion reduction, and most inexpensive.

Synthesis of $LiCoO_2$ by solution route and its behaviour as a cathode material in lithium ion secondary battery (액상반응에 의해 합성한 $LiCoO_2$ 를 정극활물질로 이용한 Li ion 2차전지의 특성)

  • 김상필;조정수;박정후;심윤보;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.143-146
    • /
    • 1998
  • The $LiCoO_2$ powder was synthesized at >$700^{\circ}C$, >$850^{\circ}C$ by solution route. In this paper, we investigated X-ray diffraction, and charge-discharge performance for $LiCoO_2$/Li and $LiCoO_2$/MPCF cell. The $LiCoO_2$/Li ceSl exhibited a high avmge discharge potential of 38-3% and a good cycle life performance at 5(hnA/g during chargedischarge cycling between 43-3.0V. And, the $LiCoO_2$MPCF cell showed a high average discharge voltage of 3.6-3.W and a excellent cycle life prfomam during chargedischarge cycling b&wm 4 2-2.W. As a result, the $LiCoO_2$ powdm syd-eizd by solution route is a good cathode material for lithium ion secondary battery.

  • PDF

Novel estimation method of operating life in lithium-ion pouch cells

  • Kim, Hyosung;Kim, Jaekwang;Kim, Nayeong;Lee, Ilbok;Hwang, Keebum;Bae, Joongho;Yoon, Songhun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.266-275
    • /
    • 2018
  • Herein, a novel operating life (OL) test method was evaluated with 200 mAh pouch-type lithium-ion batteries. By combining the calendar life (CL) test with intermediate pulse power cycling, more realistic life prediction was possible, which encompassed real operation of batteries accompanying with thermal acceleration. Larger capacity decrease and resistance increase of pouch cell were observed in the OL test, which was well explained using the SEI film growth model. After dissemble of pouch cell, capacity loss and resistance increase mostly occurred within anode, reflecting that SEI film growth on anode surface was highly attributable to cell degradation.

Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation (CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석)

  • SIM, CHANG-HWI;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

Speciation of Cd, Cu and Zn in Sewage Sludge-Treated Soils Incubated under Aerobic and Anaerobic Conditions

  • Lee, Sang-Mo;Cho, Chae-Moo;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.85-91
    • /
    • 1999
  • The incubation study was conducted under aerobic and anaerobic conditions to study the release of the kinetically labile forms (i. e. chelating ion or anion forms) of Cd, Cu and Zn in sludge-untreated soil ("Control"), sludge 50 and $100dry\;Mg\;ha^{-1}$ treated soils ("Soil-Sludge mixtures"), and sewage sludge ("Sludge"). The chelating ion and anion exchange membranes were embedded into the samples and incubated for 16 weeks under aerobic and anaerobic condition. The total amounts of chelating ion or anionic forms of Cd were too little to be measured during both aerobic and anaerobic incubation. On the other hand, the total amounts of chelating ion or anionic forms of Cu and Zn slightly increased throughout the incubation period under both incubation conditions. For "Control" and "Soil-Sludge mixtures" treatments, the total amounts of Cu and Zn in chelating ion and anion exchange membrane were little difference between aerobic and anaerobic condition, and the total amounts of chelating ion form of Cu and Zn were not different from the those of anionic form of Cu and Zn. However, for "Sludge" treatment, the total amounts of Cu and Zn in anion and chelating ion exchange membrane were greater under aerobic condition than under anaerobic condition, and the total amounts of chelating ion form of Cu and Zn were greater than those of anion form of Cu and Zn under both incubation conditions.

  • PDF