• Title/Summary/Keyword: Life Cycle Assessment (LCA) method

Search Result 93, Processing Time 0.04 seconds

A Study on Improving Environmental Characteristics of Cyclone Vacuum Cleaner using Life Cycle Assessment (LCA 평가를 이용한 싸이클론 진공청소기의 친환경성 개선방안에 관한 연구)

  • Hwang, Bo-Seok;Yoon, Yong-Han;Lee, Chanhyun;Yi, Hwa-Cho
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.241-250
    • /
    • 2014
  • In this study, performance and environmental characteristics of cyclone vacuum cleaners are analyzed and product improvement methods are investigated to minimize environmental effect of the cleaners using the result. A simplified LCA method is used to analyze environmental characteristics of the cyclone vacuum cleaners. Two cyclone vacuum cleaners with similar specifications are chosen for the experiment. Typical characteristics of cyclone vacuum cleaners such as energy consumption, suction force, noise and temperature are measured and compared. Most environmental effect was caused by the energy consumption in use phase of life cycle. Some ideas are created to reduce energy consumption of the vacuum cleaners in use phase like installing baffle, and methods to extend exchange period of filter. It is analyzed how recyclability rate of vacuum cleaners could be improved to reduce the environmental effect in whole life of the vacuum cleaners.

A Study on the Characteristics of Environmental Impact with the Seat Material of Electric Motor Unit (EMU) (전동차 의자의 재질에 따른 환경부하 특성에 관한 연구)

  • Lee, Jae-Young;Kim, Bo-Kyong;Chun, Yoon-Young;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.524-531
    • /
    • 2006
  • Environmental problem is one of important global issues. Transportations are main pollutant emission sources. Although railroad is stilt an environmental-friendly transportation, its environmental impact has been increased continuously. Especially, because a large amount of environmental impact is released from vehicles and facilities, it is necessary to assess and to reduce their environmental impact. Life cycle assessment (LCA) is a representative method which can evaluate environment impact through the whole life cycle of a product or a process. In this study, the environmental impact of seat in the electric motor unit (EMU) was analyzed quantitatively with its material using lift cycle assessment (LCA). As a result, the characteristics of environmental impact were investigated differently with the material of seat. Among ten impact categories, the seat with aluminum and FRP showed the highest ozone depletion (OD). On the other hand, in the seat with stainless steel and plastic, fresh water aquatic ecotoxicity (FAET) and marine water aquatic ecotoxicity (MAET) were high relatively. Therefore, the parts of EMU must be selected considering the characteristics of environmental impact in future.

Development of a Simplified Model for Estimating CO2 Emissions: Focused on Asphalt Pavement (CO2 배출량 추정을 위한 간략 모델 개발: 아스팔트 포장을 중심으로)

  • Kim, Kyu-Yeon;Kim, Sung-Keun
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.109-120
    • /
    • 2021
  • Global warming due to increased carbon dioxide is perceived as one of the factors threatening the future. Efforts are being made to reduce carbon dioxide emissions in each industry around the world. In particular, environmental loads and impacts during the life cycle of SOC structures and buildings have been quantitatively assessed through a quantitative method called Life Cycle Assessment (LCA). However, the construction sector has gone through difficulty in quantitative assessment for several reasons: 1) LCI DB is not fully established; 2) the life cycle is very long; 3) the building structures are unique. Therefore, it takes enormous effort and time to carry out LCA. Rather than estimating carbon emissions with accuracy, this study aims to present a simplified estimation model that allows owners or designers to easily estimate carbon dioxide emissions with little effort, given that rapid and rough decisions regarding environmental load reduction are to be made. This study performs the LCA using data from 25 road construction projects across the country, followed by multiple regression analyses to derive a simplified carbon estimation model (SLCA). The study also carries out a comparative analysis with values estimated by performing a typical LCA. The comparison analysis shows an error rate of less than 5% for 16 road projects.

A Study on the Reduction of $CO_2$ Emission by the Application of Clean Technology in the Cement Industry (시멘트산업공정에서의 $CO_2$배출량 저감을 위한 청정기술 적용에 관한 연구)

  • Park, Young-G.;Kim, Jeong-In
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2010
  • The feasibility of clean technology to minimize the $CO_2$ emission by recycling and reuse the waste materials and energy have been studied for the cement industry. A life cycle assessment (LCA) was performed for an alternative raw material-supply method to use the molted slag as the major raw material in the cement clinker manufacturing. Using this new method, a 60% of $CO_2$ could be reduced that comes out during the decarboxylation from the cement rotary kiln. The energy-efficiency improvement and the alternative energy methods that had been determined in our previous study through the environmental assessment of cement industry were applied to the study for the reduction of $CO_2$ emission. The natural gas, one of the fossil fuels, was also used as the first choice to get the result at the earliest time by the most economic and the most efficient green technology and to switch into the carbon neutral energy consumption pattern.

Environmental Impact and Water Foot Print Assessment of Pot Bearing Using Life Cycle Assessment (LCA) (LCA를 이용한 교량용 포트받침 환경영향 및 물발자국 분석)

  • Park, Jihyung;Wie, Daehyung;Ko, Kwanghoon;Hwang, Yongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.851-857
    • /
    • 2018
  • In this research, LCA analysis of the manufacturing process of pot bearing for fixed, movable in all directions, movable in one direction was carried out to analyze the environmental load using the LCA methodology. Especially, the water footprint that has been and issue in recent years was analyzed. As a result of LCA, it was analyzed that the contribution of the plate was more than 64.2% in all of the six impact categories in the case of fixed pot bearing base, and more than 94% in the category of resource depletion and photochemical oxidant creation. In the case of all direction pot bearing and one direction pot bearing, the contribution of PTFE was the highest in the global warming and stratospheric ozone depletion, and the contribution by the plate was higher in the other impact categories. The water footprint of each type of pot bearing was analyzed as $22.4m^3\;H_2O\;eq/kg$ for one direction pot bearing, $17.1m^3\;H_2O\;eq/kg$ for fixed pot bearing, and $14.1m^3\;H_2O\;eq/kg$ for all direction pot bearing. As a result of life cycle analysis, the contribution of water use in manufacturing was more than 65% in all three types. The results of this study can be used as basic data for decision making in construction method and material selection of bridges in the future.

A Study on the case study LCA Analysis for the Education and Research Building of S University (S대학교 교육연구동 LCA분석 사례 연구)

  • Bum Sung-Woo;Kim Min-Hyun;Park Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.465-468
    • /
    • 2003
  • It has taken a growing interest about environmental problems such as global warming and water pollution. Because of intensified environmental problems, it would be going on the research about environmental preservation and harmful factor reduction. Also, it makes ISO to show the quantitative data about LCA analysis. The research of LCA method in the domestic construction industry has advanced stealing from a national point of view. In this study, it would be possible to confirm the feasibility of a plan by LCA analysis. Moreover, the result of life cycle cost which deliberate the influence cost of environment in the steps of material production, construction, maintenance, and disposal has made to be 74,819,560,776 won in a plan and 78,979.469,602won in alternative. That is, it would analysis for a plan to reduce 4,159,908,826 won for alternative.

  • PDF

A Study on the Estimation Method of the Environmental Load Intensity for Analyzing GHG Reduction Effect of Han-Ok

  • Kim, Sunghee
    • Architectural research
    • /
    • v.15 no.3
    • /
    • pp.143-150
    • /
    • 2013
  • The Korean government recently has rediscovered the potential value of Han-Ok, the Korean traditional house, as an eco-friendly building. In order to objectively verify the environmental performance of Han-Ok as a low carbon green building, this paper suggests the analysis method of GHG emission load of Korean traditional house, based on Life Cycle Assessment, which is commonly abbreviated to "LCA". The environmental impacts caused by building construction and operation can be analyzed through the sum of input and output data from every phase. The study particularly describes the GHG reduction effect by using traditional building materials such as wood products, traditional clay roof tiles, and mud, which are mainly used to construct Han-Ok. Also the study proposes the method for comparative analysis of quantity of GHG emissions in building's entire life cycle so that the data can be used as a reliable basis to optimize the environmental performance of building.

A Study on Methodology and Application of Life Cycle Assessment - Concerning Semiconductor (반도체를 대상으로 한 LCA(Life Cycle Assessment)의 방법론 및 적용에 관한 연구)

  • Chung, Chan Kyo;Koo, Hee Jun
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.201-213
    • /
    • 1996
  • Environmental regulation has traditionally focused on specific phenomena and adopted the so-called end-of-pipe approach. Recently, however, the new environmental paradigm is more concerned with minimization of waste generation, efficient material and energy use, pollution prevention, etc. The basis of above concept is that one must consider the environmental impacts of a product not only during its manufacturing stage, but during all life stages. In the present study, the current status of LCA and its importance to environmental impacts have been reviewed. In the usual approach to LCA, screening LCA method has been used to promote international competition and define environmental concerns during semiconductor manufacturing. In the present study, a review of semiconductor manufacturing process and its environmental implication has been conducted to quantify the material and energy requirements, minimize the waste generation, and evaluate production cost. Recommended activities are also specified for process modification to improve the process efficiency.

  • PDF

A Study on the Characteristics of Environmental Impact in Construction Sector of High-Speed Railway using LCA (LCA를 이용한 고속철도 건설단계에서의 환경부하 특성에 관한 연구)

  • Lee, Cheol;Lee, Jae-Young;Jung, Woo-Sung;Hwang, Young-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.178-185
    • /
    • 2014
  • This study investigates the characteristics of environmental impact from the construction phase of a high-speed railway through a Life Cycle Assessment method based on the materials used and the energy consumption of the equipment used according to the design statement. The results reveal that the contributions to environmental impact in the construction sector of a high-speed railway were 89% for civil engineering, 7% for the track system, 2% for stations and 2% for the energy and telecommunication system. In particular, the highest contribution to the impact in the civil engineering category were 54% for Global Warming, 25% for Abiotic Resource Depletion and 8% for Photochemical Oxidant Creation. The main influence factors were the use of remicon and cement. In future, the application of Life Cycle Assessment for the construction sector of railway construction will introduce efficient reduction methods according to the quantitative calculation of environmental impact.