• 제목/요약/키워드: Lieber-DeCarli diet

검색결과 22건 처리시간 0.016초

Effect of Herbal Extracts Mixtures on Antioxidant System in Chronic Enthanol-treated Rats

  • Kim, Mok-Kyung;Won, Eun-Kyung;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • 제14권4호
    • /
    • pp.226-234
    • /
    • 2006
  • Disturbance of antioxidant system is very common in chronic alcoholics and herbal or natural products with antioxidant activity have been used for its treatment. This study was to investigate the effect of Vitis vinifera extract(V), Schisandra chinensis extract(S), Taraxacum officinale extract(T), Gardenia jasminoides extract(G), Angelica acutiloba extract(A) and Paeonia japonica extract(P), and their combinations on the antioxidant and ethanol oxidation system. Male Sprague-Dawley rats were subjected to Lieber-DeCarli ethanol liquid diet(ED) and were then given different herbal extract mixtures for 6 weeks including VST(V 100+S 150+T 150mg/kg/day), VSG(V 100+S 150+G 150mg/kg/day), VTG(V 100+T 150+G 150mg/kg/day), and VAP(V 100+A 150+P 150mg/kg/day). When the activity of alcohol dehydrogenase(ADH) and acetaldehyde dehydrogenase(ALDH) were compared between ED only group and herbal extracts treatment group, the differences were statistically significant. Phase I and II(glutathione-S-transferase, phenol sulfatransferase) enzyme activities were found to be significantly higher in the VAT treatment group compared to the ED group. Herbal extracts not only repressed the ethanol-induced elevation of malondialdehyde level, but also protected against ethanol-induced decrease in glutathione content, glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. The administration of the herbal extracts was found to be effective in eliminating lipid-peroxides induced by long-term consumption of alcohol by activating various enzyme systems and physiological active compound formation system. After a chronic consumption of alcohol, Angelica Radix protected the liver via activating the ethanol-metabolism enzyme system, and Paeoniae Radix via activating the ethanol-metabolism enzyme and the phase I, II-metabolism enzyme system. Taraxaci Herba was also effective in liver protection via activating the ethanol-metabolism enzyme system and the phase I, II-metabolism enzyme system, Gardeniae Fructus via activating the phase II-metabolism enzyme system and the anti-oxidation system enzyme, and Schisandra Fructus and a grapestone via activating the anti-oxidation system. Our data suggest that these herbal extracts may be useful as a health functional food or new drug candidate for fatty liver and hepatotoxicity induced by chronic alcohol consumption.

Gentiopicroside Ameliorates the Progression from Hepatic Steatosis to Fibrosis Induced by Chronic Alcohol Intake

  • Yang, Hong-Xu;Shang, Yue;Jin, Quan;Wu, Yan-Ling;Liu, Jian;Qiao, Chun-Ying;Zhan, Zi-Ying;Ye, Huan;Nan, Ji-Xing;Lian, Li-Hua
    • Biomolecules & Therapeutics
    • /
    • 제28권4호
    • /
    • pp.320-327
    • /
    • 2020
  • In current study, we aimed to investigate whether the gentiopicroside (GPS) derived from Gentiana manshurica Kitagawa could block the progression of alcoholic hepatic steatosis to fibrosis induced by chronic ethanol intake. C57BL/6 mice were fed an ethanol-containing Lieber-DeCarli diet for 4 weeks. LX-2 human hepatic stellate cells were treated with GPS 1 h prior to transforming growth factor-β (TGF-β) stimulation, and murine hepatocyte AML12 cells were pretreated by GPS 1 h prior to ethanol treatment. GPS inhibited the expression of type I collagen (collagen I), α-smooth muscle actin (α-SMA) and tissue inhibitor of metal protease 1 in ethanol-fed mouse livers with mild fibrosis. In addition, the imbalanced lipid metabolism induced by chronic ethanol-feeding was ameliorated by GPS pretreatment, characterized by the modulation of lipid accumulation. Consistently, GPS inhibited the expression of collagen I and α-SMA in LX-2 cells stimulated by TGF-β. Inhibition of lipid synthesis and promotion of oxidation by GPS were also confirmed in ethanol-treated AML12 cells. GPS could prevent hepatic steatosis advancing to the inception of a mild fibrosis caused by chronic alcohol exposure, suggesting GPS might be a promising therapy for targeting the early stage of alcoholic liver disease.