• Title/Summary/Keyword: Lie automorphism

Search Result 20, Processing Time 0.025 seconds

A LINEAR APPROACH TO LIE TRIPLE AUTOMORPHISMS OF H*-ALGEBRAS

  • Martin, A. J. Calderon;Gonzalez, C. Martin
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.117-132
    • /
    • 2011
  • By developing a linear algebra program involving many different structures associated to a three-graded H*-algebra, it is shown that if L is a Lie triple automorphism of an infinite-dimensional topologically simple associative H*-algebra A, then L is either an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism. If A is finite-dimensional, then there exists an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism F : A $\rightarrow$ A such that $\delta$:= F - L is a linear map from A onto its center sending commutators to zero. We also describe L in the case of having A zero annihilator.

AUTOMORPHISMS OF A WEYL-TYPE ALGEBRA I

  • Choi, Seul-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • Every non-associative algebra L corresponds to its symmetric semi-Lie algebra $L_{[,]}$ with respect to its commutator. It is an interesting problem whether the equality $Aut{non}(L)=Aut_{semi-Lie}(L)$ holds or not [2], [13]. We find the non-associative algebra automorphism groups $Aut_{non}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ and $Aut_{non-Lie}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ where every automorphism of the automorphism groups is the composition of elementary maps [3], [4], [7], [8], [9], [10], [11]. The results of the paper show that the F-algebra automorphism groups of a polynomial ring and its Laurent extension make easy to find the automorphism groups of the algebras in the paper.

SUBALGEBRAS OF A q-ANALOG FOR THE VIRASORO ALGEBRA

  • Nam, Ki-Bong;Wang, Moon-Ok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.545-551
    • /
    • 2003
  • We define subalgebras ${V_q}^{mZ{\times}nZ}\;of\;V_q\;where\;V_q$ are in the paper [4]. We show that the Lie algebra ${V_q}^{mZ{\times}nZ}$ is simple and maximally abelian decomposing. We may define a Lie algebra is maximally abelian decomposing, if it has a maximally abelian decomposition of it. The F-algebra automorphism group of the Laurent extension of the quantum plane is found in the paper [4], so we find the Lie automorphism group of ${V_q}^{mZ{\times}nZ}$ in this paper.

AUTOMORPHISMS OF UNIFORM LATTICES OF NILPOTENT LIE GROUPS UP TO DIMENSION FOUR

  • Lee, Jong Bum;Lee, Sang Rae
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.653-666
    • /
    • 2020
  • In this paper, when G is a connected and simply connected nilpotent Lie group of dimension less than or equal to four, we study the uniform lattices Γ of G up to isomorphism and then we study the structure of the automorphism group Aut(Γ) of Γ from the viewpoint of splitting as a natural extension.

ON AUTOMORPHISM GROUPS OF AN є-FRAMED MANIFOLD

  • Kim, J.S.;Cho, J.H.;Tripathi, M.M.;Prasad, R.
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.635-645
    • /
    • 2002
  • Two examples of $\varepsilon$-famed manifolds are constructed. It is proved that an $\varepsilon$-framed structure on a manifold is not unique. Automorphism groups of r-framed manifolds are studied. Lastly we prove that a connected Lie group G admits a left invariant normal $\varepsilon$-framed structure if and only if the Lie algebra of all left invariant vector fields on G is an $\varepsilon$-framed Lie algebra.

NOTES ON ${\overline{WN_{n,0,0_{[2]}}}$ I

  • CHOI, SEUL HEE
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.571-581
    • /
    • 2005
  • The Weyl-type non-associative algebra ${\overline{WN_{g_n,m,s_r}}$ and its subalgebra ${\overline{WN_{n,m,s_r}}$ are defined and studied in the papers [8], [9], [10], [12]. We will prove that the Weyl-type non-associative algebra ${\overline{WN_{n,0,0_{[2]}}}$ and its corresponding semi-Lie algebra are simple. We find the non-associative algebra automorphism group $Aut_{non}({\overline{WN_{1,0,0_{[2]}}})$.

  • PDF

AFFINE INNER AUTOMORPHISMS BETWEEN COMPACT CONNECTED SEMISIMPLE LIE GROUPS

  • Park, Joon-Sik
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.859-867
    • /
    • 2002
  • In this paper, we get a necessary and sufficient condition for an inner automorphism between compact connected semisimple Lie groups to be an atone transformation, and obtain atone transformations of (SU(n),g) with some left invariant metric g.

THE GENERALIZED WITT ALGEBRAS USING ADDITIVE MAPS I

  • Nam, Ki-Bong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.233-238
    • /
    • 1999
  • Kawamoto generalized the Witt algebra using F[${X_1}^{\pm1},....{X_n}^{\pm1}$] instead of F[x1,…, xn]. We construct the generalized Witt algebra $W_{g,h,n}$ by using additive mappings g, h from a set of integers into a field F of characteristic zero. We show that the Lie algebra $W_{g,h,n}$ is simple if a g and h are injective, and also the Lie algebra $W_{g,h,n}$ has no ad-digonalizable elements.

  • PDF

AN ALGEBRA WITH RIGHT IDENTITIES AND ITS ANTISYMMETRIZED ALGEBRA

  • Choi, Seul-Hee
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.273-281
    • /
    • 2008
  • We define the Lie-admissible algebra NW$({\mathbb{F}}[e^{A[s]},x_1,{\cdots},x_n])$ in this work. We show that the algebra and its antisymmetrized (i.e., Lie) algebra are simple. We also find all the derivations of the algebra NW$(F[e^{{\pm}x^r},x])$ and its antisymmetrized algebra W$(F[e^{{\pm}x^r},x])$ in the paper.

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.