• Title/Summary/Keyword: Lie algebras

Search Result 83, Processing Time 0.026 seconds

ON HOM-LIE TRIPLE SYSTEMS AND INVOLUTIONS OF HOM-LIE ALGEBRAS

  • Yara, Hamdiatou;Zoungrana, Patricia L.
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.363-373
    • /
    • 2022
  • In this paper we mainly establish a relationship between involutions of multiplicative Hom-Lie algebras and Hom-Lie triple systems. We show that the -1-eigenspace of any involution on any multiplicative Hom-Lie algebra becomes a Hom-Lie triple system and we construct some examples of Hom-Lie triple systems using some involutions of some classical Hom-Lie algebras.

HOMOMORPHISMS IN PROPER LIE CQ*-ALGEBRAS

  • Lee, Jung Rye;Shin, Dong Yun
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.87-99
    • /
    • 2011
  • Using the Hyers-Ulam-Rassias stability method of functional equations, we investigate homomorphisms in proper $CQ^*$-algebras and proper Lie $CQ^*$-algebras, and derivations on proper $CQ^*$-algebras and proper Lie $CQ^*$-algebras associated with the following functional equation $$\frac{1}{k}f(kx+ky+kz)=f(x)+f(y)+f(z)$$ for a fixed positive integer $k$.

SOME PROPERTIES OF VERMA MODULES OVER AFFINE LIE ALGEBRAS

  • Kim, Wan-Soon
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.789-795
    • /
    • 1995
  • For nonintegrable weight $-\rho$, some weight multiplicities of the irreducible module $L(-\rho)$ over $A^{(1)}_{(1)}$ affine Lie algebras are expressed in terms of the colored partition functions. Also we find the multiplicity of $L(-\rho)$ in ther Verma module $M(-\rho)$ for any affine Lie algebras.

  • PDF

THE CLASSIFICATION OF ω-LEFT-SYMMETRIC ALGEBRAS IN LOW DIMENSIONS

  • Zhiqi Chen;Yang Wu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.747-762
    • /
    • 2023
  • ω-left-symmetric algebras contain left-symmetric algebras as a subclass and the commutator defines an ω-Lie algebra. In this paper, we classify ω-left-symmetric algebras in dimension 3 up to an isomorphism based on the classification of ω-Lie algebras and the technique of Lie algebras.

3-HOM-LIE SUPERBIALGEBRAS AND 3-HOM-LIE CLASSICAL YANG-BAXTER EQUATIONS

  • Issam Bartouli;Imed Basdouri;Gaith Chaabane;Mohamed Fadous;Jean Lerbet
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.11-30
    • /
    • 2024
  • 3-Lie algebras are in close relationships with many fields. In this paper we are concerned with the study of 3-Hom-Lie super algebras, the concepts of 3-Hom-Lie coalgebras and how they make a 3-Hom-Lie superbialgebras, we study the structures of such categories of algebras and the relationships between each others. We study a super twisted 3-ary version of the Yang-Baxter equation, called the super 3-Lie classical Hom-Yang-Baxter equation (3-Lie CHYBE), which is a general form of 3-Lie classical Yang-Baxter equation and prove that the superbialgebras induced by the solutions of the super 3-Lie CHYBE induce the coboundary local cocycle 3-Hom-Lie superbialgebras.

ON UNIVERSAL COVERINGS OF LIE TORI

  • Khalili, Valiollah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1199-1211
    • /
    • 2012
  • In this paper we give an introduction to the theory of universal central extensions of perfect Lie algebras. In particular, we will provide a model for the universal coverings of Lie tori and we show that automorphisms and derivations lift to the universal coverings. We also prove that the universal covering of a Lie ${\Lambda}$-torus of type ${\Delta}$ is again a Lie ${\Lambda}$-torus of type ${\Delta}$.

ROTA-BAXTER OPERATORS OF 3-DIMENSIONAL HEISENBERG LIE ALGEBRA

  • Ji, Guangzhi;Hua, Xiuying
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, we consider the question of the Rota-Baxter operators of 3-dimensional Heisenberg Lie algebra on ${\mathbb{F}}$, where ${\mathbb{F}}$ is an algebraic closed field. By using the Lie product of the basis elements of Heisenberg Lie algebras, all Rota-Baxter operators of 3-dimensional Heisenberg Lie algebras are calculated and left symmetric algebras of 3-dimensional Heisenberg Lie algebra are determined by using the Yang-Baxter operators.